DESCRIPTION

The 2505 512-bit and the 2512 1024-bit recirculating dynamic shift registers consist of enhancement mode p-channel MOS devices integrated on a single monolithic chip. Internal recirculation logic plus write and read controls, together with 2 chip select controls are included on the chip.

BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS 1

DC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{D D}=-5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

	PARAMETER	TEST CONDITIONS	2505			2512			UNIT
			Min	Typ	Max	Min	Typ	Max	
	Input voltage ${ }^{3}$								V
VIL	Low		-5.0		0.6	-5.0		0.6	
$\mathrm{V}_{1 \text { H }}$	High		3.4		5.3	3.4		5.3	
VILC	Clock low		-12.0		-10.0	-12.0		-10.0	
VIHC	Clock high		4.0		5.3	4.0		5.3	
	Output voltage								V
Vol	Low	$\mathrm{R}_{\mathrm{L}}=3.0 \mathrm{~K}, 1 \mathrm{TTL}$ load $(\mathrm{l}=1.6 \mathrm{~mA}) 4$		-1.0			-1.0		
Voh1	High, driving 1 TTL load	$R_{L}=3.0 \mathrm{~K}, 1 \mathrm{TTL}$ load ($\mathrm{K}=100 \mu \mathrm{~A}$)	2.4	3.5		2.4	3.5		
VOH2	High, driving MOS	$\mathrm{R}_{\mathrm{L}}=5.6 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	3.6	4.0		3.6	4.0		
ILI	Input load current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	500		10	500	nA
	Leakage current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							nA
ILO	Output	$V_{\phi_{1}}=V_{\phi_{2}}=-12 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=-5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-5.5 \mathrm{~V}$		10	1000		10	1000	
ILC	Clock	$\mathrm{V}_{\text {ILC }}=-12 \mathrm{~V}$		10	1000		10	1000	
IDD	Supply current	Continuous operation, $\phi \mathrm{pW}=150 \mathrm{~ns}, 1 \mathrm{MHz}$, $V_{I L C}=-12 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{D D}=-5.5 \mathrm{~V}$		15	25		25	35	mA
	Capacitance	$1 \mathrm{MHz}, \mathrm{V}_{\text {AC }}=25 \mathrm{mV}$ p-p							pF
$\mathrm{CIN}^{\text {N }}$	Input	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$							
Cout	Output	$V_{0}=V_{C C}$			5			5	
$\mathrm{C}_{\text {¢ }}$	Clock				50			100	

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} 3, \mathrm{~V}_{\mathrm{DD}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ILC}}=-11 \mathrm{~V}$

PARAMETER	TO	FROM	TEST CONDITIONS	LIMITS			UNIT
				Min	Typ	Max	
Freq. Clock data rep rate $t_{\phi P W}$ Clock pulse width $t_{\phi D}$ Clock pulse delay t_{r}, t_{F} Clock pulse transition			$\mathrm{W}=\mathrm{R}=\mathrm{VCC}$	$\begin{gathered} .0005 \\ 180 \\ 10 \end{gathered}$	3	2.5 1	$\begin{gathered} \mathrm{MHz} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \mu \mathrm{~s} \end{gathered}$
Setup and hold time tow Setup time to Hold time	Input clock Data in	Data in Input clock		$\begin{gathered} 150 \\ 10 \end{gathered}$			ns
$\mathrm{t}_{A_{+}, \mathrm{t}_{\text {- }} \text { - Delay time }}$	Data out	Clock				100	ns
Clock to read or chip select or write timing $\begin{aligned} & \mathrm{t}_{\mathrm{R}-, \mathrm{tcs}-, \mathrm{t}_{\mathrm{w}}} \\ & \mathrm{t}_{\mathrm{R}-,}, \mathrm{tcs}^{2}, \mathrm{~T}_{\mathrm{w}}+ \end{aligned}$				0 0			ns

NOTES

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
2. For operating at elevated temperatures the device must be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
3. Guaranteed input levels are stated for worst case conditions including a $\pm 5 \%$ variation in Vcc and a temperature variation of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Actual input requirements with respect to V_{CC} are $\mathrm{V}_{\mathbb{H}}=\mathrm{V}_{\mathrm{CC}}-$ 1.85 V and $\mathrm{V}_{\mathrm{IL}}=\mathrm{Vcc}-4.15 \mathrm{~V}$.
4. $V_{O L}$ is a function of the input characteristics of the driven TTL/DTL gate lo. and VCLAMP and the value of the pull-down resistor (R_{L}).
5. All inputs are protected against static charge.
6. Parameters are valid over operating temperature range unless otherwise specified.
7. All voltage measurements are referenced to ground.
8. Manufacturer reserves the right to make design and process changes and improvements.
9. Typical values are at $+25^{\circ} \mathrm{C}$ and typical supply voltage.

TIMING DIAGRAM

