DESCRIPTION

These Signetics 2500 Series dual 100-bit Dynamic Shift Registers consist of enhancement mode p-channel MOS devices integrated on a single monolithic chip. They use 2 clock phases.

FEATURES

- 2506: Bare drain
- 2507: 7.5K Pull down
- 2517: 20K Pull down

ABSOLUTE MAXIMUM RATINGS1

	PARAMETER	RATING	UNIT
	Temperature range		${ }^{\circ} \mathrm{C}$
TA	Operating	0 to 70	
Tstg	Storage	-65 to 150	
PD	Power dissipation at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C} 2$		mW
	T package	535	
	N package	455	
	Clock input voltages	0.3 to -20	v
	with respect to VCC^{3}		
	Supply and data input voltages with respect to Vcc^{3}	0.3 to -12	V

BLOCK DIAGRAM

PIN CONFIGURATIONS

N PACKAGE

DC ELECTRICAL CHARACTERISTICS $\quad T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{C C}=5 \mathrm{~V} 4$, unless otherwise specified. $5,6,7,8$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		Min	Typ	Max			
VIL $V_{\text {IH }}$ VILC VIHC	Input voltage ${ }^{9}$ Low High Clock low Clock high			$\begin{gathered} -5 \\ 3.2 \\ -12 \\ 4 \end{gathered}$		$\begin{gathered} 1.05 \\ 5.3 \\ -10 \\ 5.3 \end{gathered}$	V
$\begin{aligned} & \mathrm{VOH}_{1} \\ & \mathrm{VOH}_{2} \end{aligned}$	Output voltage ${ }^{9}$ High (driving MOS) High (driving TTL)	$\mathrm{R}_{\text {INT }}=7.5 \mathrm{k}$ typ, $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, 2507$ only RINT $=20 \mathrm{k}$ typ, 2517 only $R_{L}=3.3 k, V_{D D}=-5 V, 2506$ only	$\begin{aligned} & 3.4 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$		V	
ILI	Load current Input 1	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ OUT $1, \phi 1, \phi 2$ and $V_{C C}=5 \mathrm{~V}$, $\operatorname{IN} 2$, OUT 2 and $\operatorname{IN} 1=-5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=-4.5 \mathrm{~V}$		10	500	nA	
	Input 2	OUT 2, $\phi 1, \phi 2$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\operatorname{IN} 1$, OUT 1 and $\operatorname{IN} 2=-5.5 \mathrm{~V}, V_{D D}=-4.5 \mathrm{~V}$		10	500		
ILO	Leakage current ${ }^{10}$ Out 1	$T_{A}=25^{\circ} \mathrm{C}$ IN $1, \mathrm{Vcc}$, OUT 2 and $\phi 2=5 \mathrm{~V}$, IN $2, V_{D D}$ and OUT $1=-5.5 \mathrm{~V}, \phi 1=-5 \mathrm{~V}$		10	1000	nA	
	Out 2	IN 1, OUT 1, VCC and $\phi 2=5 \mathrm{~V}$, $\operatorname{IN} 2, \mathrm{VDD}$ and OUT $2=-5.5 \mathrm{~V}, \phi=-5 \mathrm{~V}$		10	1000		
ILC	Clock leakage current $\begin{aligned} & \phi 1 \\ & \phi 2 \\ & \hline \end{aligned}$	$\begin{gathered} T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{D D}=-4.5 \mathrm{~V}, \mathrm{All} \text { other pins } 5 \mathrm{~V} \\ V_{\phi 1}=-12 \mathrm{~V} \\ \mathrm{~V}_{\phi 2}=-12 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	nA	
IDD	VoD supply current	Outputs at logic low or high $3 \mathrm{MHz}, \phi_{1}=150 \mathrm{~ns}, \phi_{2}=100 \mathrm{~ns}$		12	26	mA	
$\begin{aligned} & \mathrm{C}_{1 N} \\ & \mathrm{C}_{\phi} \end{aligned}$	Capacitance Input (1 and 2) Clock input ($\phi 1, \phi 2$)	$\begin{gathered} 1 \mathrm{MHz}, 25 \mathrm{mV} \mathrm{p}-\mathrm{p} \\ \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{cc}} \\ \mathrm{~V}_{\phi}=\mathrm{V}_{\mathrm{cc}} \end{gathered}$		$\begin{aligned} & 2.5 \\ & 25 \end{aligned}$	$\begin{gathered} 5 \\ 40 \end{gathered}$	pF	

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{D D}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{C C}=5 \mathrm{~V} 4, \mathrm{~V}_{\text {ILC }}=-11 \mathrm{~V}$

PARAMETER		TO	FROM	TEST CONDITIONS	LIMITS			UNIT	
		Min			Typ	Max			
Freq.	Clock rep rate					. 0006	4	3	MHz
$\phi 1$ PW $\phi 2$ PW	Pulse width Clock ${ }^{1} 1$ Clock $\$ 2$			At 3 MHz	$\begin{aligned} & 150 \\ & 100 \\ & \hline \end{aligned}$			ns	
ϕ_{d} $t_{\text {p, }} \mathrm{t}_{\mathrm{F}}$ tw too t_{A+}	Clock pulse delay Clock pulse transition Setup time Data in overlap Delay time	$\phi 2$ Data out	Data in $\phi 1$	At 3 MHz At 3 MHz $\begin{gathered} t_{\text {RO2 }}=t_{\text {R } 01}=10 \mathrm{~ns} \\ \mathrm{~V}_{\phi}=\mathrm{V}_{\mathrm{CC}}-16 \mathrm{~V}, \text { Data out }=2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \\ & 75 \\ & 10 \end{aligned}$	90	$\begin{aligned} & 1000 \\ & 150 \\ & \hline \end{aligned}$	ns ns ns ns ns	

notes

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
2. For operating at elevated temperatures the device must be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ (T package) or $175^{\circ} \mathrm{C} / \mathrm{W}$ (V package).
3. All inputs are protected against static charge.
4. $\mathrm{V}_{\text {cc }}$ tolerance is $\pm 5 \%$. Any variation in actual V_{CC} will be tracked directly by V_{IL}. $\mathrm{V}_{\text {IH }}$ and $\mathrm{V}_{\text {OH }}$ which are stated for a Vcc of exactly 5 volts.
5. Parameters are valid over operating temperature range unless otherwise specified.
6. All voltage meuurements are referenced to ground.
7. Manufacturer reserves the right to make design and process changes and improvements.
8. Typical values are at $+25^{\circ} \mathrm{C}$ and typical supply voltages.
9. Logic Convention: Data Lines - Positive; Clocks -Negative.
10. V_{OL} (for this bare drain device) is a function only of the driven gate characteristics together with the external pull-down resistor. (RpD).

TIMING DIAGRAM

