ADVANCE SPECIFICATION

DESCRIPTION

The 2526 is a high speed 5,184-bit Static Read-Only Memory available in a $64 \times 9 \times 9$ organization. This device has TTL compatible inputs and outputs and requires +5 V and -12 V power supplies. A $\overline{\mathrm{READ}}$ input controls the entry of data from the ROM into output latches. Three-state outputs allow OR tying for implementing larger memories. OUTPUT ENABLE controls the nine output devices without affecting address circuitry.

FEATURES

- 64x9x9 ORGANIZATION
- 625ng TYPICAL ACCESS TIME
- STATIC OPERATION
- OUTPUT LATCHES
- TTL/DTL COMPATIBLE INPUTS
- TTL/DTL COMPATIBLE THREE-STATE OUTPUTS
- $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V}$
- 24-PIN SILICONE DIP
- SIGNETICS P-MOS SILICON GATE PROCESS TECHNOLOGY

APPLICATIONS
 VERTICAL OR RAS'TER SCAN DISPLAYS (7×9 MATRIX) PRINTER CHARACTER GENERATOR PANEL DISPLAYS AND BILLBOARDS MICRO-PROGRAMMING CODE CONVERSION

BIPOLAR COMPATIBILITY

All inputs of the 2526 can be driven directly by standard bipolar integrated circuits (TTL, DTL, etc.). The data output buffers are capable of sinking a minimum of 1.6 mA sufficient to drive one standard TTL load.

STANDARD TRUTH TABLES

The 2526 N/CM3940 is a 7×9 matrix, ASCII character set (raster scan)*utilizing the two unused left-most columns for BCDIC-ASCII and BAUDOT-ASCII code converters. Use this device for evaluation or for suitable application. Other standards will be announced as they become available.

- for vertical scan specify CM3400

CUSTOM TRUTH TABLES

See page 7-197.

SILICON GATE MOS 2500 SERIES
PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

PART IDENTIFICATION

PART	OP. TEMP. RANGE	PACKAGE
2526N	$0-70^{\circ} \mathrm{C}$	24-Pin Silicone DIP
25261	$0.70^{\circ} \mathrm{C}$	24-Pin Ceramic DIP

MAXIMUM GUARANTEED RATINGS (1)

Operating Ambient Temperature Storage Temperature
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Package Power Dissipation 2 @ $70^{\circ} \mathrm{C}$ Input ${ }^{3}$ and Supply Voltages

730 mW
+0.3 to -20 V
with respect to VCC

DC CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$; unless otherwise noted. (See notes $4,5,6,7$)

SYMBOL	TEST	MIN	TYP	MAX	UNIT	CONDITIONS
ILI	Input Load Current		10	500	nA	$\begin{aligned} & V_{I N}=-5.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$
ILO	Output Leakage Current		10	1000	nA	$\begin{aligned} & V O U T=O V \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$
						$V_{C E}=V_{C C}$
ICC	VCC Power Supply Current		30	45	mA	(8)
IGG	VGG Power Supply Current		30	45	mA	(8)
VIL	Input Logic "0"	-5		1.05	V	
VIH	Input Logic "1"	3.2		5.3	V	

AC CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$ unless otherwise noted.

SYMBOL	TEST	MIN	TYP	MAX	UNIT	CONDITIONS
$\mathrm{VOH}^{\text {O }}$	Output Logic "zero"			0.8	V	One TTL Load
V OH	Output Logic "one"	3.0			V	One TTL Load
${ }^{\text {t }}$ RPW ${ }^{11}$	Read Pulse Width	250	200		ns	
${ }^{\text {R }}$ RPW ${ }^{10}$	Read Pulse Width	500	400		ns	
${ }^{t} A D$	Address Delay Time (12)			50	ns	
${ }^{t} A G$	Address-Read Pulse Gap (12)			50	ns	
${ }^{t} \mathrm{~A} 1$	Address to Output Delay		625	700	ns	(9)
${ }^{t}$ A2	End of Read Pulse to Output Delay		200	250		(9)
CIN	Address Input Capacitance			10	pF	$f \mathrm{f}=1 \mathrm{MHz}$,
${ }^{\text {t }} \mathrm{OE}$	Output Enable to Output Delay		100	250	ns	$l \begin{aligned} & V_{A C}=25 m V p-p \\ & V_{\text {IN }}=V_{C C}\end{aligned}$

NOTES:

1. Stresses above those listed under "Maximum Guaranteed Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those Indicated in the operational sections of this specification is not implied.
2. For operating at elevated temperatures the device must be derated based on a $+150^{\circ} \mathrm{C}$ maximum Junction temperature and a thermal resistance of $110^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
3. All inputs are protected agalnst gtatic charge.
4. Parameters are valid over operating temperature range unless specified.
5. All voltage measurements are referenced to ground.
6. Manufacturer reserves the right to make design and process changes and improvements.
7. Typical values are at $+26^{\circ} \mathrm{C}$ and nominal supply voltages.
8. Outputs Open, ${ }^{\text {R RPW }}=250 n s,{ }^{T_{R P W}}=500 \mathrm{~ns}$.
9. $t_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
10. During trpw1 data is clocked into the output latches and the address decoders are precharged in preparation for the next cycle.
11. During $\mathrm{t}_{\overline{\mathrm{R}}}^{\mathrm{P}} \mathrm{W}_{1}$ addresses are decoded and sent to the memory matrix; and the stored memory date is moved to the date inputs

- of the output RS latches. This date is clocked into the output latches at the end (rising edge) of the $\overline{\text { READ pulse. After t }}$ A2, data appears at the output terminals.

12. Addresses must be stable within 5Ons after the $\overline{\operatorname{READ}}$ line falls and must remain stable until at least 50ns before the $\overline{\text { READ }}$ line goes high.

TIMING DIAGRAM

Note: All times measured from $\mathbf{5 0 \%}$ points, for all input waveforms $\mathrm{tr}=\mathbf{t}_{\mathbf{f}}<10 \mathrm{nsec}$.

CHARACTER FONTS

ASC I I SET, VERTICAL SCAN 7X9 WITH CODE CONVERSION(1)

NOTES

1. BCDIC to ASC I I in leftmost column, Baudot to ASC I 1 in next column to right.
2. Undefined addresses result in all outputs going low (TTL " 0 ").
3. Blank squares in character font are high (TTL " 1 ").

CHARACTER FONTS (Cont'd)

ASC I I SET, RASTER SCAN 7X9 WITH CODE CONVERSION(1)

NOTES

1. BCDIC to ASC I 1 in leftmost column, Baudot to ASC \mid I in next column to right.
2. Undefined addresses result in all outputs going low (TTL " 0 ").
3. Blank squares in character font are high (TTL "1").
