54/74179
 4-BIT SHIFT REGISTER

DESCRIPTION - The '179 features synchronous parallel or serial entry, asynchronous reset and parallel outputs, with the complement output of the fourth stage also available. The flip-flops are fully edge-triggered, with state changes initiated by a HIGH-to-LOW transition of the clock. Parallel Enable and Serial Enable inputs are used to select Load, Shift and Hold modes of operation. A LOW signal on the Master Reset input overrides all other inputs and forces the Q outputs to the LOW state.

ORDERING CODE: See Section 9

PKGS	$\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$	COMMERCIAL GRADE	MILITARY GRADE	PKG TYPE
		$\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V C C=+5.0 \mathrm{~V} \pm 10 \% \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	
Plastic DIP (P)	A	74179PC		9B
Ceramic DIP (D)	A	74179DC	54179DM	6B
Flatpak (F)	A	74179FC	54179FM	4L

CONNECTION DIAGRAM PINOUT A

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW
$P E$	Parallel Enable Input	$1.0 / 1.0$
$P_{0}-P_{3}$	Parallel Data Inputs	$1.0 / 1.0$
$D s$	Serial Data Input	$1.0 / 1.0$
$S E$	Shift Enable Input	$1.0 / 1.0$
$\overline{C P}$	Clock Pulse Input (Active Falling Edge)	$1.0 / 1.0$
$\overline{M R}$	Asynchronous Master Reset Input (Active LOW)	$1.0 / 1.0$
$Q_{0}-Q_{3}$	Flip-flop Outputs	$20 / 10$
\bar{Q}_{3}	Fourth Stage Complement Output	$20 / 10$

FUNCTIONAL DESCRIPTION - The '179 contains four D-type edge-triggered flip-flops and sufficient interstage logic to perform parallel load, shift right or hold operations. All state changes except reset are initiated by a HIGH-to-LOW transition of the clock. A LOW signal on MR overrides all other inputs and forces the Q outputs LOW and \bar{Q}_{3} HIGH. With $\overline{M R}$ HIGH, a HIGH signal on SE prevents parallel loading and permits a right shift each time the clock makes a HIGH-to-LOW transition. When $\overline{M R}$ and SE are LOW, the signal applied to PE determines whether the circuit is in a parallel load or a hold mode, as shown in the Mode Select Table. The SE, $P E, D_{s}$ and P_{n} inputs can change when the clock is in either state, provided only that the recommended setup and hold times are observed.

MODE SELECT TABLE

INPUTS				RESPONSE
$\overline{\mathrm{MR}}$	SE	PE	$\overline{C P}$	
L	X	X	X	Asynchronous Reset; $\mathrm{Q}_{\mathrm{n}} \rightarrow$ LOW; $\mathrm{Q}_{3} \rightarrow \mathrm{HIGH}$
H	H	X	L	Right Shift. $\mathrm{Ds}^{\text {m }} \rightarrow \mathrm{Q}_{0} ; \mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1}$, etc.
H	L	H	2	Parallel load. $\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$
H	L	L	X	Hold

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		54/74		UNITS	CONDITIONS
			Min	Max		
Icc	Power Supply Current	XM		$\begin{aligned} & 70 \\ & 75 \end{aligned}$	mA	$\begin{aligned} & \mathrm{VCc}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{P}_{\mathrm{n}}=\mathrm{Gnd} \\ & \mathrm{Ds}, \overline{\mathrm{PE}}, \mathrm{SE}, \mathrm{MR}=4.5 \mathrm{~V} \\ & \mathrm{CP}=2 \end{aligned}$

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER			UNITS	CONDITIONS
		$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$			
		Min	Max		
$f_{\text {max }}$	Maximum Clock Frequency	25		MHz	Figs. 3-1, 3-9
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\overline{\mathrm{CP}}$ to Q_{n}		$\begin{aligned} & 26 \\ & 35 \end{aligned}$	ns	Figs. 3-1, 3-9
tple	Propagation Delay $\overline{M R}$ to Q_{3}		23	ns	Figs. 3-1, 3-17
tPhL	Propagation Delay $\overline{M R}$ to Q_{n}		36	ns	

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	54/74		UNITS	CONDITIONS
		Min	Max		
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup Time HIGH or LOW Ds or P_{n} to $\overline{C P}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		ns	Fig. 3-7
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$	Hold Time HIGH or LOW Ds or P_{n} to $\overline{C P}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup Time HIGH or LOW PE or SE to $\overline{\mathrm{CP}}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$		ns	
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$	Hold Time HIGH or LOW PE or SE to $\overline{\mathrm{CP}}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns	
$t_{w}(H)$	$\overline{\mathrm{CP}}$ Pulse Width HIGH	20		ns	Fig. 3-9
$t_{w}(L)$	$\overline{\text { MR Pulse Width LOW }}$	20		ns	Fig. 3-17
trec	$\frac{\text { Recovery }}{\overline{M R} \text { to } \overline{C P}}$	15		ns	Fig. 3-17

