## 54/74198 8-BIT R/L SHIFT REGISTER

DESCRIPTION - The '198 features synchronous parallel load, hold, shift right and shift left modes, as determined by the Select ( $\mathrm{S}_{0}, \mathrm{~S}_{1}$ ) inputs. State changes are initiated by the rising edge of the clock. An asynchronous Master Reset ( $\overline{\mathrm{MR}}$ ) input overrides all other inputs and clears the register. The '198 is useful for serial-serial, serial-parallel, parallel-serial and parallel-parallel register transfers.

- PARALLEL IN/PARALLEL OUT
- SYNCHRONOUS PARALLEL LOAD
- SHIFT RIGHT AND SHIFT LEFT CAPABILITY
- ASYNCHRONOUS OVERRIDING CLEAR

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74198PC |  | 9 N |
| Ceramic DIP (D) | A | 74198DC | 54198DM | 6 N |
| Flatpak (F) | A | 74198FC | 54198FM | 4M |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $S_{0}, S_{1}$ | Mode Select Inputs | $1.0 / 1.0$ |
| $P_{0}-P_{7}$ | Parallel Data Inputs | $1.0 / 1.0$ |
| DsR | Serial Data Input (Shift Right) | $1.0 / 1.0$ |
| DsL | Serial Data Input (Shift Left) | $1.0 / 1.0$ |
| $C P$ | Clock Pulse Input (Active Rising Edge) | $1.0 / 1.0$ |
| $M R$ | Asynchronous Master Reset Input (Active LOW) | 1.01 .0 |
| Q | Qlip-flop Outputs | $20 / 10$ |



FUNCTIONAL DESCRIPTION - The '198 contains eight edge-triggered D-type flip-flops and the interstage gating required to perform synchronous parallel load, shift right, and shift left operations. Serial data enters at DSR for shift right and at DSL for shift left operations. Parallel data is applied to the $P_{0}-P_{7}$ inputs. State changes are initiated by the rising edge of the clock. The DSR, DSL and P0 - P7 inputs can change when the clock is in either state, provided only that the recommended setup and hold times are observed.

The operating mode is determined by $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$, as shown in the Mode Select Table. Clocking of the flip-flops is inhibited when both $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$ are LOW. To avoid inadvertently clocking the register, the Select inputs should only be changed while CP is HIGH. A LOW signal on $\overline{M R}$ overrides all other inputs and forces the outputs LOW.

MODE SELECT TABLE

| INPUTS |  |  |  | RESPONSE |
| :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{MR}}$ | CP | $\mathrm{So}^{*}$ | $S_{1}{ }^{*}$ |  |
| L | x | X | X | Asynchronous Reset; Outputs = LOW |
| H | $\sim$ | H | H | Parallel Load; $\mathrm{P}_{\mathrm{n}} \longrightarrow \mathrm{Q}_{\mathrm{n}}$ |
| H | - | L | H | Shift Right; $\mathrm{DSR}^{\text {m }}$ - $\mathrm{Q}_{0}, \mathrm{Q}_{0} \longrightarrow \mathrm{Q}_{1}$, etc. |
| H | $\stackrel{\sim}{x}$ | H | L | Shift Left; DSL $\rightarrow \mathrm{Q}_{7}, \mathrm{Q}_{7} \longrightarrow \mathrm{Q}_{6}$, etc. |
| H | X | L | L | Hold |

- Select inputs should be changed only while CP is HIGH H = HIGH Voltage Level L = LOW Voltage Level $X=$ Immaterial


## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)


AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Shift Frequency | 25 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay CP to $Q_{n}$ |  | $\begin{aligned} & 26 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| tPhL | Propagation Delay $\overline{M R}$ to $Q_{n}$ |  | 35 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{VcC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | UNITS |
| :--- | :--- | :---: | :---: | :---: |

