54/7496

5-BIT SHIFT REGISTER

DESCRIPTION - The ' 96 consists of five RS master/slave flip-flops connected to perform parallel-to-serial or serial-to-parallel conversion of binary data. Since both inputs and outputs to all flip-flops are accessible, parallel-in/parallel-out or serial-in/serial-out operation may be performed.

All flip-flops are simultaneously set to the LOW state by applying a low level voltage to the clear input. This condition may be applied independent of the state of the clock input.

The flip-flops may be independently set to the HIGH state by applying a high level voltage to both the preset input of the specific flip-flop and the common parallel load input. The parallel enable input is provided to allow setting each flip-flop independently or setting two or more flip-flops simultaneously. Preset is independent of the state of the clock input or clear input.

Transfer of information to the output pins occurs when the clock input goes from a LOW level to a HIGH level. Since the flip-flops are RS master/slave circuits, the proper information must appear at the RS inputs of each flip-flop prior to the rising edge of the clock input voltage waveform. The serial input provides this information to the first flip-flop, while the outputs of the subsequent flip-flops provide information for the remaining RS inputs. The clear input must be at a HIGH level and the parallel load input must be at a LOW level for serial shifting.

ORDERING CODE: See Section 9

PKGS	$\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$	COMMERCIAL GRADE	MILITARY GRADE	$\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$
		$\begin{aligned} & V_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	
Plastic DIP (P)	A	7496PC		9B
Ceramic DIP (D)	A	7496DC	5496DM	7B
Flatpak (F)	A	7496FC	5496FM	4L

CONNECTION DIAGRAM PINOUT A

\qquad
LOGIC SYMBOL

$V_{c c}=\operatorname{Pin} 5$
GND $=\operatorname{Pin} 12$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW
CP	Clock Pulse Input (Active Rising Edge)	$1.0 / 1.0$
CL	Asynchronous Clear Input (Active LOW)	$1.0 / 1.0$
Ds	Serial Data Input	$1.0 / 1.0$
$P_{0}-P_{4}$	Parallel Data Inputs	$1.0 / 1.0$
PL	Asynchronous Parallel Load Input (Active HIGH)	$5.0 / 5.0$
$Q_{0}-Q_{4}$	Parallel Outputs	$10 / 10$

mode select table

INPUTS						OPERATION*
PL	P_{n}	\bar{C}	Ds	CP	Q_{n}	
L	X	L	X	x	L	Clear; all outputs forced LOW
H	H^{*}	H	X	x	H	Selectively Preset; each output
H	L**	H	X	X	L	set to its P input
L	X	H	H, L	Ω	$\mathrm{Q}_{\mathrm{n}-1}$	Shift right; $\mathrm{Ds} \rightarrow \mathrm{Q}_{0} ; \mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1}$, etc.

*Simultaneous Preset and Clear operations produce undefined states.
*-To insure proper presetting, P inputs must remain stable while PL is LOW.
H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		54/74		UNITS

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER			UNITS	CONDITIONS
		$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=400 \Omega \end{aligned}$			
		Min	Max		
$f_{\text {max }}$	Maximum Shift Frequency	10		MHz	Figs. 3-1, 3-8
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay CP to Q_{n}		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	ns	Figs. 3-1, 3-8
tple	Propagation Delay, PL or P_{n} to Q_{n}		35	ns	Figs. 3-1, 3-16
tPHL	Propagation Delay, $\overline{C L}$ to Q_{n}		55	ns	Figs. 3-1, 3-16

AC OPERATING REQUIREMENTS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	54/54		UNITS	CONDITIONS
		Min	Max		
$\mathrm{tw}_{w}(\mathrm{~L})$	CP Pulse Width LOW	35		ns	Fig. 3-8
$\mathrm{taw}_{\text {w }}(\mathrm{L})$	$\overline{C L}$ Pulse Width LOW	30		ns	Fig. 3-16
$t_{w}(H)$	PL Pulse Width HIGH	30		ns	Fig. 3-16
$\mathrm{ts}_{s}(H)$	Setup Time HIGH, Ds to CP	30		ns	Fig. 3-6
th (H)	Hold Time HIGH, Ds to CP	0		ns	Fig. 3-6
$\mathrm{ts}_{\text {s }}(\mathrm{L})$	Setup Time LOW, Ds to CP	30		ns	Fig. 3-6
$t \mathrm{th}(\mathrm{L})$	Hold Time LOW, Ds to CP	0		ns	Fig. 3-6

