DB, DW, OR NT PACKAGE (TOP VIEW)

SCAS214A - JULY 1987 - REVISED APRIL 1996

- Eight D-Type Flip-Flops in a Single Package
- 3-State Bus-Driving True Outputs
- Full Parallel Access for Loading
- Flow-Through Architecture Optimizes PCB Layout
- Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise
- EPIC™ (Enhanced-Performance Implanted CMOS) 1-μm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline (DW) and Shrink Small-Outline (DB) Packages, and Standard Plastic 300-mil DIPs (NT)

24 TOE 1Q 2Q**∏** 23 T 1D 3Q[] 3 22 🛮 2D 4Q∏ 4 21 3D GND ∏ 5 20 ¶ 4D GND∏ 6 19 V_{CC} GND∏ 7 18 V_{CC} GND ¶8 17 | 5D 16 🛮 6D 5Q∏ 9 6Q∏ 10 15 **∏** 7D 14 \ 8D 7Q**∏** 11 8Q[12 13 CLK

description

This 8-bit flip-flop features 3-state outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the 74AC11374 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs are set to the logic levels set up at the D inputs.

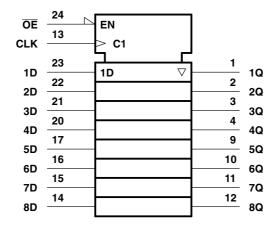
The output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance third state provides the capability to drive the bus lines in a bus-organized system without need for interface or pullup components.

OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The 74AC11374 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE (each flip-flop)

	INPUTS							
OE	CLK	D	Q					
L	↑	Н	Н					
L	\uparrow	L	L					
L	L	Χ	Q_0					
L	Н	Χ	Q_0					
L	\downarrow	Χ	Q_0					
Н	Х	Χ	Z					



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCAS214A - JULY 1987 - REVISED APRIL 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	
Output voltage range, V _O (see Note 1)	
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±200 mA
Maximum power dissipation at T _A = 55°C (in still air) (see Note 2)	: DB package 0.65 W
	DW package1.7 W
	NT package1.3 W
Storage temperature range, T _{stq}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils, except for the NT package, which has a trace length of zero.

recommended operating conditions

			MIN	NOM	MAX	UNIT	
V_{CC}	Supply voltage		3	5	5.5	V	
		V _{CC} = 3 V	2.1				
V_{IH}	High-level input voltage	$V_{CC} = 4.5 \text{ V}$	3.15			V	
		$V_{CC} = 5.5 \text{ V}$	3.85				
		V _{CC} = 3 V			0.9		
V_{IL}	Low-level input voltage	$V_{CC} = 4.5 \text{ V}$			1.35	V	
		$V_{CC} = 5.5 \text{ V}$			1.65		
VI	Input voltage		0		V_{CC}	V	
Vo	Output voltage		0		V_{CC}	V	
		V _{CC} = 3 V			-4		
I _{OH}	High-level output current	$V_{CC} = 4.5 \text{ V}$			-24	mA	
		$V_{CC} = 5.5 \text{ V}$			-24		
		V _{CC} = 3 V			12		
l _{OL}	Low-level output current	V _{CC} = 4.5 V	24		24	mA	
		$V_{CC} = 5.5 \text{ V}$			24		
4.74		Data	0		10	2.4	
Δt/Δv	Input transition rise or fall rate OE		0		5	ns/V	
T _A	Operating free-air temperature	_	-40		85	°C	

SCAS214A - JULY 1987 - REVISED APRIL 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS	.,	Т	_A = 25°C	;			
PARAMETER	TEST CONDITIONS	v _{cc}	MIN	TYP	MAX	MIN	MAX	UNIT
		3 V	2.9			2.9		
	$I_{OH} = -50 \mu A$	4.5 V	4.4			4.4		
		5.5 V	5.4			5.4		
V _{OH}	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		V
	I _{OH} = -24 mA	4.5 V	3.94			3.8		
	IOH = -24 IIIA	5.5 V	4.94			4.8		
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
		3 V			0.1		0.1	
	I _{OL} = 50 μA	4.5 V			0.1		0.1	
		5.5 V			0.1		0.1	
V _{OL}	I _{OL} = 12 mA	3 V			0.36		0.44	V
		4.5 V			0.36		0.44	
	I _{OL} = 24 mA	5.5 V			0.36		0.44	
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
l _{OZ}	V _O = V _{CC} or GND	5.5 V			±0.5		±5	μΑ
I _I	V _I = V _{CC} or GND	5.5 V			±0.1		±1	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		80	μΑ
C _i	V _I = V _{CC} or GND	5 V		4				pF
C _o	$V_O = V_{CC}$ or GND	5 V		10				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

			T _A = 2	25°C		14 A V	
			MIN	MAX	MIN	MAX	UNIT
f _{clock}	Clock frequency		0	75	0	75	MHz
t _w	Pulse duration	CLK low or high	6.5		6.5		ns
t _{su}	Setup time, data before CLK↑		2.5		2.5		ns
t _h	Hold time, data after CLK↑		4.5		4.5		ns

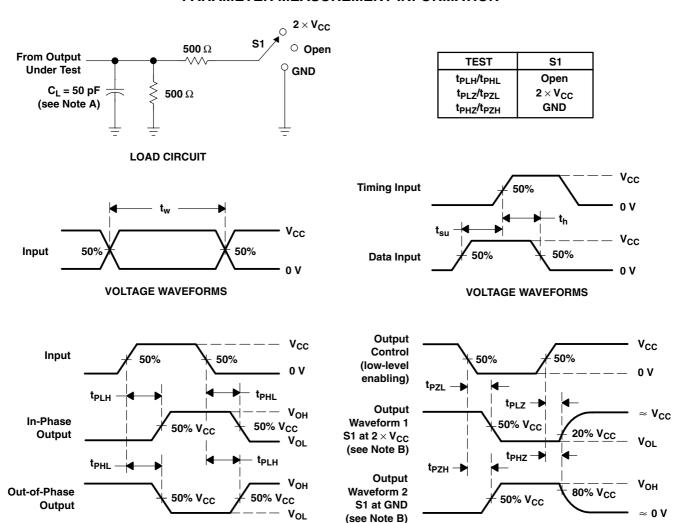
timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			$T_A = 2$	25°C	84181	MAY	
			MIN	MAX	MIN	MAX	UNIT
f _{clock}	Clock frequency		0	95	0	95	MHz
t _w	Pulse duration	CLK low or high	5		5		ns
t _{su}	Setup time, data before CLK↑		2.5		2.5		ns
t _h	Hold time, data after CLK↑		3.5		3.5		ns

SCAS214A - JULY 1987 - REVISED APRIL 1996

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	T _A = 25°C			MAIN	MAY	LINUT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	UNIT
f _{max}			75	90		75		MHz
t _{PLH}	OLK	A O	1.5	9.5	12.5	1.5	14.2	
t _{PHL}	CLK	Any Q	1.5	9	12.6	1.5	14	ns
t _{PZH}	0 -		1.5	8	10.9	1.5	12.3	
t _{PZL}	ŌĒ	Any Q	1.5	8	11.1	1.5	12.3	ns
t _{PHZ}	OF.	Any O	1.5	10	12.1	1.5	12.5	ne
t _{PLZ}	ŌĒ	Any Q	1.5	8	10.7	1.5	11.6	ns


switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	T _A = 25°C				MAY	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	UNIT
f _{max}			95	110		95		MHz
t _{PLH}	OLK	A O	1.5	6.5	9	1.5	10.2	
t _{PHL}	CLK	Any Q	1.5	5.5	9.1	1.5	10.1	ns
t _{PZH}	OF.	A O	1.5	5.5	8	1.5	9.1	
t _{PZL}	ŌĒ	Any Q	1.5	5.5	8.4	1.5	9.4	ns
t _{PHZ}	OF.		1.5	9	11	1.5	11.2	
t _{PLZ}	ŌĒ	Any Q	1.5	6	8.6	1.5	9.2	ns

operating characteristics, V_{CC} = 5 V, T_A = 25 $^{\circ}C$

	PARAMETER	TEST CO	TYP	UNIT		
	Power dissipation capacitance per flip-flop	Outputs enabled	C ₁ = 50 pF	f =1 MHz	75	ηF
Opd	Power dissipation capacitance per ilip-ilop	Outputs disabled	CL = 50 pF	I = I IVITIZ	66	þΓ

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

VOLTAGE WAVEFORMS

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

VOLTAGE WAVEFORMS

- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_{O} = 50 \Omega$, $t_{r} = 3 \text{ ns}$, $t_{f} = 3 \text{ ns}$.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

7-Jun-2010

PACKAGING INFORMATION

Orderable Device	Status (1) P	ackage Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
74AC11374DBLE	OBSOLETE	SSOP	DB	24		TBD	Call TI	Call TI	Samples Not Available
74AC11374DBR	OBSOLETE	SSOP	DB	24		TBD	Call TI	Call TI	Samples Not Available
74AC11374DW	OBSOLETE	SOIC	DW	24		TBD	Call TI	Call TI	Samples Not Available
74AC11374DWR	OBSOLETE	SOIC	DW	24		TBD	Call TI	Call TI	Samples Not Available
74AC11374NT	OBSOLETE	PDIP	NT	24		TBD	Call TI	Call TI	Samples Not Available

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

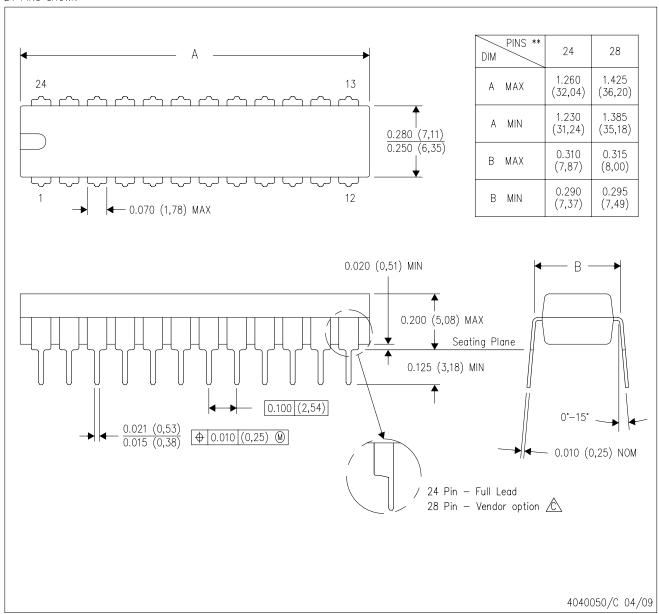
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

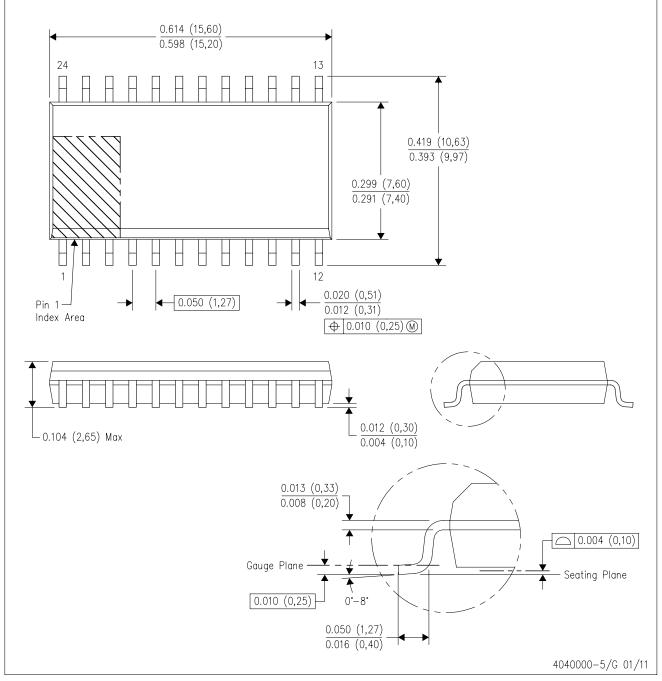
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NT (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

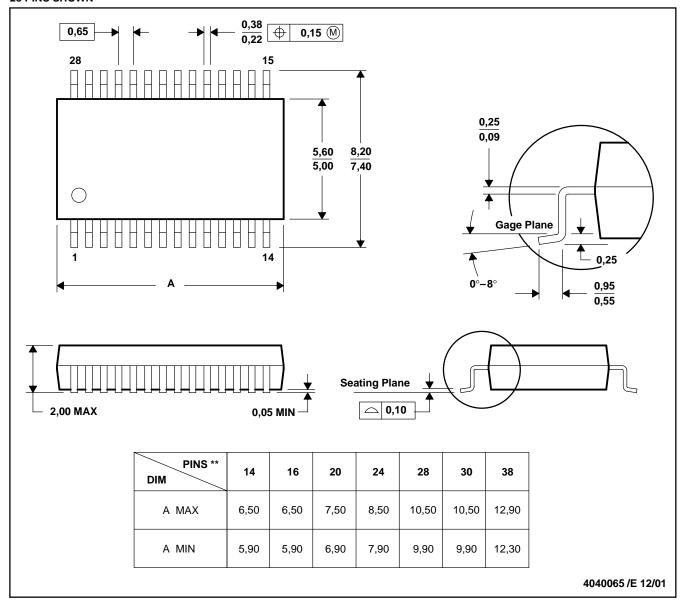

B. This drawing is subject to change without notice.

The 28 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.


- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AD.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

e2e.ti.com