FAIRCHILD

SEMICONDUCTOR

74AC139 • 74ACT139 Dual 1-of-4 Decoder/Demultiplexer

General Description

The AC/ACT139 is a high-speed, dual 1-of-4 decoder/ demultiplexer. The device has two independent decoders, each accepting two inputs and providing four mutuallyexclusive active-LOW outputs. Each decoder has an active-LOW Enable input which can be used as a data input for a 4-output demultiplexer. Each half of the AC/ ACT139 can be used as a function generator providing all four minterms of two variables.

November 1988 Revised November 1999

74AC139 • 74ACT139 Dual 1-of-4 Decoder/Demultiplexer

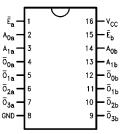
Ordering Code:

Order Number	Package Number	Package Description
74AC139SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74AC139SJ	M16D	16-Lead Small Outline Package (SOIC), EIAJ Type II, 5.3mm Wide
74AC139MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC139PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT139SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74ACT139SJ	M16D	16-Lead Small Outline Package (SOIC), EIAJ Type II, 5.3mm Wide
74ACT139MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT139PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Features ■ I_{CC} reduced by 50%

Multifunction capability

Outputs source/sink 24 mA


■ Two completely independent 1-of-4 decoders

Active LOW mutually exclusive outputs

■ ACT139 has TTL-compatible inputs

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Pin Descriptions

Pin Names	Description
A ₀ , A ₁	Address Inputs
Ē	Enable Inputs
$\overline{O}_0 - \overline{O}_3$	Outputs

FACT™ is a trademark of Fairchild Semiconductor Corporation.

© 1999 Fairchild Semiconductor Corporation DS009926

Logic Symbols A Ao DECODER a 0₀ 0₁ 0₂ 0₃ q Q A₀ A DECODER b 00 01 02 03 IEEE/IEC X/Y 0_{0a} A_{0a} 0_{1a} A_{1a} $\bar{o}_{2\bm{a}}$ Ē, ΕN \bar{o}_{3a} 0_{0b} A_{Ob} ō_{1b} A_{1b} ō_{2b} Ē ō_{3b}

Functional Description

The AC/ACT139 is a high-speed dual 1-of-4 decoder/ demultiplexer. The device has two independent decoders, each of which accepts two binary weighted inputs (A₀-A₁) and provides four mutually exclusive active-LOW outputs $(\overline{O}_0-\overline{O}_3)$. Each decoder has an active-LOW enable (\overline{E}). When \overline{E} is HIGH all outputs are forced HIGH. The enable can be used as the data input for a 4-output demultiplexer application. Each half of the AC/ACT139 generates all four minterms of two variables. These four minterms are useful in some applications, replacing multiple gate functions as shown in Figure 1, and thereby reducing the number of packages required in a logic network.

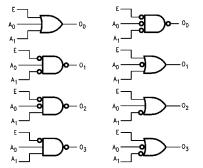
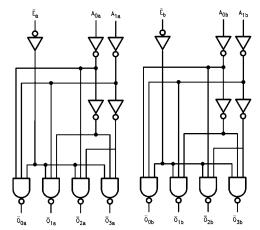


FIGURE 1. Gate Functions (Each Half)


Truth Table

	Inputs			Out	puts	
Ē	A ₀	A ₁	00	01	02	03
Н	Х	Х	Н	Н	Н	Н
L	L	L	L	Н	Н	Н
L	н	L	н	L	н	н
L	L	н	н	н	L	н
L	Н	Н	Н	Н	Н	L

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum R	atings(Note 1)	Recommended Operat	ting
Supply Voltage (V _{CC})	-0.5V to +7.0V	Conditions	
DC Input Diode Current (I _{IK})		Supply Voltage (V _{CC})	
$V_{I} = -0.5V$	–20 mA	AC	2.0V to 6.0V
$V_{I} = V_{CC} + 0.5V$	+20 mA	ACT	4.5V to 5.5V
DC Input Voltage (V _I)	$-0.5 V$ to $V_{CC} + 0.5 V$	Input Voltage (V _I)	0V to V _{CC}
DC Output Diode Current (I _{OK})		Output Voltage (V _O)	0V to V _{CC}
$V_{O} = -0.5V$	–20 mA	Operating Temperature (T _A)	-40°C to +85°C
$V_O = V_{CC} + 0.5V$	+20 mA	Minimum Input Edge Rate (ΔV/Δt)	
DC Output Voltage (V _O)	$-0.5V$ to $V_{CC} + 0.5V$	AC Devices	
DC Output Source		V_{IN} from 30% to 70% of V_{CC}	
or Sink Current (I _O)	±50 mA	V _{CC} @ 3.3V, 4.5V, 5.5V	125 mV/ns
DC V_{CC} or Ground Current		Minimum Input Edge Rate (ΔV/Δt)	
per Output Pin (I _{CC} or I _{GND})	±50 mA	ACT Devices	
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	V _{IN} from 0.8V to 2.0V	
Junction Temperature (T _J)		V _{CC} @ 4.5V, 5.5V	125 mV/ns
PDIP	140°C	Note 1: Absolute maximum ratings are those va to the device may occur. The databook specific out exception, to ensure that the system desig supply, temperature, and output/input loading v recommend operation of FACT ^{III} circuits outsid	cations should be met, with- on is reliable over its power variables. Fairchild does not

DC Electrical Characteristics for AC

Symbol	Parameter	V _{cc}	T _A =	+25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
Symbol	Farameter	(V)	Тур	Gu	aranteed Limits	Units	Conditions	
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		$V_{OUT} = 0.1V$	
	Input Voltage	4.5	2.25	3.15	3.15	V	or V _{CC} – 0.1V	
		5.5	2.75	3.85	3.85			
VIL	Maximum LOW Level	3.0	1.5	0.9	0.9		$V_{OUT} = 0.1V$	
	Input Voltage	4.5	2.25	1.35	1.35	V	or $V_{CC} - 0.1V$	
		5.5	2.75	1.65	1.65			
V _{он}	Minimum HIGH Level	3.0	2.99	2.9	2.9			
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$	
		5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$	
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA}$ (Note 2)	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1			
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$	
		5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$	
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
I _{IN} (Note 4)	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	μΑ	$V_I = V_{CC}, GND$	
OLD	Minimum Dynamic	5.5	1	1	75	mA	V _{OLD} = 1.65V Max	
онр	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min	
I _{CC} (Note 4)	Maximum Quiescent Supply Current	5.5		4.0	40.0	μΑ	$V_{IN} = V_{CC} \text{ or } GND$	

Note 2: All outputs loaded; thresholds on input associated with output under test. Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}.$

Symbol	Parameter	V _{CC} (V)	T _A = +25°C		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions	
Symbol			Тур	Gu	aranteed Limits	Units	Conditions	
VIH	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	V _{OUT} = 0.1V	
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$	
VIL	Maximum LOW Level	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$	
	Input Voltage	5.5	1.5	0.8	0.8	v	or $V_{CC} - 0.1V$	
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA	
	Output Voltage	5.5	5.49	5.4	5.4	v	$I_{OUT} = -50 \mu A$	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA}$ (Note s	
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	L _ E0 A	
	Output Voltage	5.5	0.001	0.1	0.1	v	$I_{OUT} = 50 \ \mu A$	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 5)	
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_1 = V_{CC}$, GND	
	Leakage Current	5.5		10.1	1.0	μΑ	VI - VCC, GND	
I _{CCT}	Maximum	5.5	0.6		1.5	mA	$V_1 = V_{CC} - 2.1V$	
	I _{CC} /Input	0.0	0.0		1.0	11/5	v1 = vCC = 2.1 v	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 6)	5.5			-75	mA	V _{OHD} = 3.85V Min	
Icc	Maximum Quiescent	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$	
	Supply Current	5.5		4.0	40.0	μΑ	or GND	

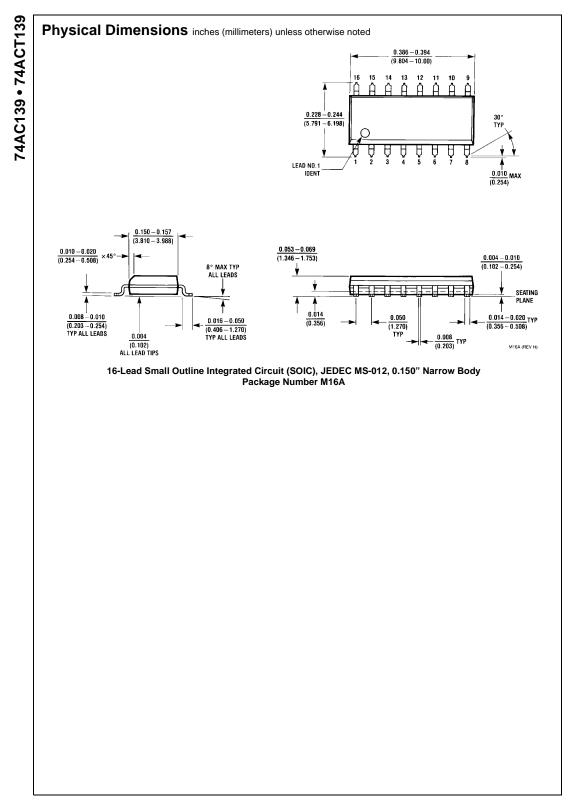
Note 5: All outputs loaded; thresholds on input associated with output under test.

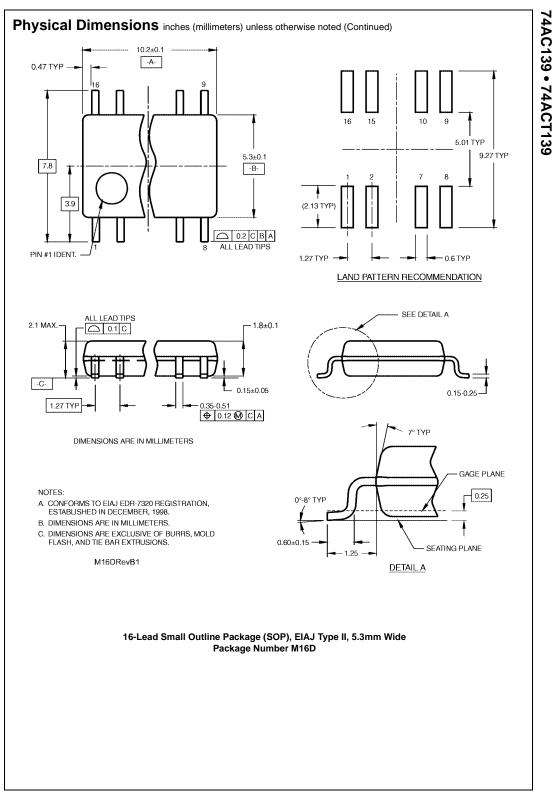
Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

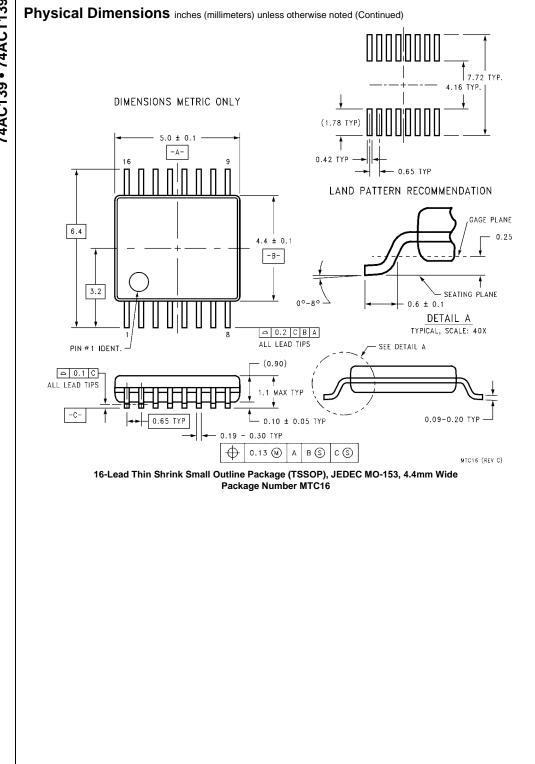
AC Electrical Characteristics for AC

Symbol	Parameter	V _{CC} (V)	T _A = +25°C C _L = 50 pF			T _A = -40° C _L =	Units		
		(Note 7)	Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay	3.3	4.0	8.0	11.5	3.5	13.0		
	A_n to \overline{O}_n	5.0	3.0	6.5	8.5	2.5	9.5	ns	
t _{PHL}	Propagation Delay	3.3	3.0	7.0	10.0	2.5	11.0		
	A_n to \overline{O}_n	5.0	2.5	5.5	7.5	2.0	8.5	ns	
t _{PLH}	Propagation Delay	3.3	4.5	9.5	12.0	3.5	13.0	20	
	\overline{E}_n to \overline{O}_n	5.0	3.5	7.0	8.5	3.0	10.0	ns	
t _{PHL}	Propagation Delay	3.3	4.0	8.0	10.0	3.0	11.0	ns	
	E _n to O _n	5.0	2.5	6.0	7.5	2.5	8.5	115	

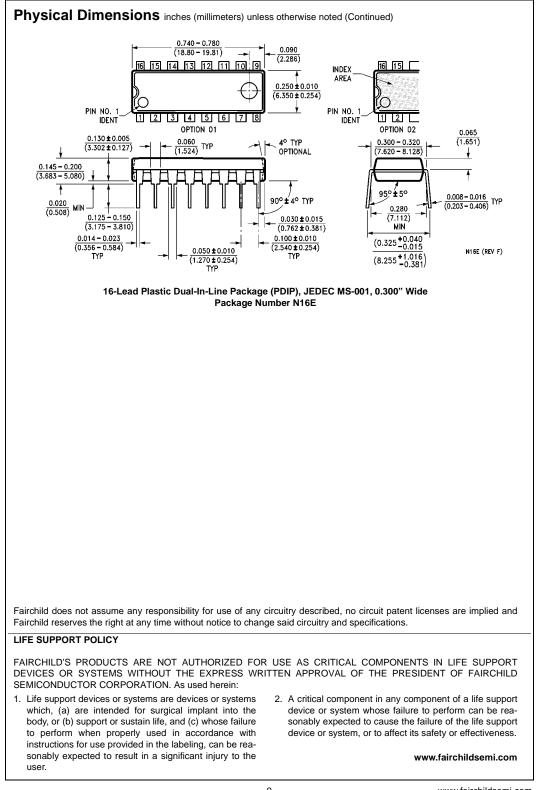
Note 7: Voltage Range 3.3 is 3.3V \pm 0.3V. Voltage Range 5.0 is 5.0V \pm 0.5V


AC Electrical Characteristics for ACT


Symbol	Parameter	V _{cc} (V)	T _A = +25°C C _L = 50 pF			T _A = -40° C _L =	Units	
		(Note 8)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay A_n to \overline{O}_n	5.0	1.5	6.0	8.5	1.5	9.5	ns
t _{PHL}	Propagation Delay A _n to O _n	5.0	1.5	6.0	9.5	1.5	10.5	ns
t _{PLH}	Propagation Delay \overline{E}_n to \overline{O}_n	5.0	2.5	7.0	10.0	2.0	11.0	ns
t _{PHL}	Propagation Delay \overline{E}_n to \overline{O}_n	5.0	2.0	7.0	9.5	1.5	10.5	ns


Note 8: Voltage Range 5.0 is $5.0V \pm 0.5V$

Capacitance


Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	40.0	pF	$V_{CC} = 5.0V$

74AC139 • 74ACT139

