

74F173
Quad D-type flip-flop (3-State)

Product specification
IC15 Data Handbook

FEATURES

- Edge-triggered D-type register
- Gated clock enable for hold "do nothing" mode
- 3-state output buffers
- Gated output enable control
- Speed upgrade of N8T10 and current sink upgrade
- Controlled output edges to minimize ground bounces
- 48mA sinking capability

DESCRIPTION

The 74F173 is a high speed 4-bit parallel load register with clock enable control, 3-state buffered outputs, and master reset (MR). When the two clock enable (E0 and E1) inputs are low, the data on the D inputs is loaded into the register simultaneously with low-to-high clock (CP) transition. When one or both enable inputs are high one setup time before the low-to-high clock transition, the register retains the previous data.

Data inputs and clock enable inputs are fully edge-triggered and must be stable only one setup time before the low-to-high clock transition.
The master reset (MR) is an active-high asynchronous input. When the MR is high, all four flip-flops are reset (cleared) independently of any other input condition.
The 3-state output buffers are controlled by a 2-input NOR gate. When both output enable (OE 0 and OE 1) inputs are low, the data in the register is presented at the Q output. When one or both OE inputs are high, the outputs are forced to a high impedance "off" state.
The 3-state output buffers are completely independent of the register operation; the $\overline{O E}$ transition does not affect the clock and reset operations.

TYPE	${\text { TYPICAL } \mathrm{f}_{\max }}^{\text {TYPICAL SUPPLY CURRENT (TOTAL) }}$	
74 F 173	125 MHz	23 mA

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	PKG DWG \#
	$\begin{array}{c}\text { COMMERCIAL RANGE } \\ \\ \end{array}$	

INPUT AND OUTPUT LOADING AND FAN OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/ LOW	LOAD VALUE HIGH/LOW
D0 - D3	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
E0, E1	Clock enable inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Master reset input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OE0, OE1	Output enable inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Q0 - Q3	Data outputs	$750 / 80$	$15 \mathrm{~mA} / 48 \mathrm{~mA}$

Note to input and output loading and fan out table

1. One (1.0) FAST unit load is defined as: $20 \mu \mathrm{~A}$ in the high state and 0.6 mA in the low state.

PIN CONFIGURATION

IEC/IEEE SYMBOL

LOGIC SYMBOL

FUNCTION TABLE

INPUTS					OUTPUTS	OUTPUTS
MR	CP	E0	E1	Dn	Qn (register)	
H	X	X	X	X	L	Reset (clear)
L	\uparrow	1	1	1	L	Parallel load
L	\uparrow	1	I	h	H	
L	X	h	X	X	qn	Hold (do nothing)
L	X	X	h	X	qn	

Notes to function table

H = High-voltage level
$\mathrm{h}=$ High state one setup time before the low-to-high clock transition
L = Low-voltage level
I = Low state one setup time before the low-to-high clock transition
qn = Lower case letters indicate the state of the referenced input (or output) on setup time prior to the low-to-high clock transition
$\mathrm{X}=$ Don't care
$\uparrow=$ Low-to-high clock transition

FUNCTION TABLE

INPUTS			OUTPUTS	OUTPUTS
Qn (register)	OE0	OE1	Qn	
L	L	L	L	Read
H	L	L	H	
X	H	X	Z	Disabled
X	X	H	Z	

Notes to function table

H = High-voltage level
L = Low-voltage level
$X=$ Don't care
Z = High impedance "off" state

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in high output state	-0.5 to V_{CC}	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in low output state	96	mA
$\mathrm{~T}_{\text {amb }}$	Operating free air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIk	Input clamp current			-18	mA
${ }^{\text {IOH }}$	High-level output current			-15	mA
$\mathrm{I}_{\text {OL }}$	Low-level output current			48	mA
$\mathrm{T}_{\text {amb }}$	Operating free air temperature range	0		+70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			MIN	TYP ${ }^{2}$	MAX					
V_{OH}	High-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.4		V		
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0			V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.0	3.1		V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V	
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$			0.35	0.50	V		
V_{IK}	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V		
I_{1}	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{I}}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{IH}	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$				-0.6	mA		
$\mathrm{I}_{\text {OZH }}$	Off-state output current, high-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
IOzL	Off-state output current, low-level voltage applied		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
los	Short-circuit output current3		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
$I_{\text {cc }}$	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ MAX			19	26	mA		
		$\mathrm{I}_{\text {CCL }}$				27	37	mA		
		$\mathrm{I}_{\text {CCZ }}$				23	32	mA		

Notes to DC electrical characteristics

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$$\mathrm{V}_{\mathrm{Cc}}=+5.0 \mathrm{~V}$$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	Waveform 1	100	125		90		MHz
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay CP to Qn	Waveform 1	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.5 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay MR to Qn	Waveform 2	6.5	8.5	11.5	6.0	12.5	ns
$\begin{aligned} & \text { tpzH } \\ & { }^{\text {tpZL }} \end{aligned}$	Output enable time to high or low level	Waveform 4 Waveform 5	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output disable time from high or low level	Waveform 4 Waveform 5	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	ns
${ }^{t_{T H L}}$ tTLH	Transition time 10% to $90 \%, 90 \%$ to 10%	Waveform 5 Waveform 4	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.5 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 11.0 \end{gathered}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\text {amb }}=+\mathbf{2 5}^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup time, high or low level Dn to CP	Waveform 3	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, high or low level Dn to CP	Waveform 3	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup time, high or low level E to CP	Waveform 3	$\begin{aligned} & 4.5 \\ & 7.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 8.5 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, high or low level E to CP	Waveform 3	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse width, high or low	Waveform 1	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$		ns
$t_{w}(\mathrm{H})$	MR Pulse width, high	Waveform 2	3.5			3.5		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, MR to CP	Waveform 2	4.5			5.5		ns

AC WAVEFORMS

Waveform 1. Propagation delay for clock input to output, clock pulse widths, and maximum clock frequency

Waveform 2. Master reset pulse width, master reset to output delay and master reset to clock recovery time

Waveform 4. 3-state output enable time to high level, output disable time from high level and transition time to high level

Waveform 5. 3-state output enable time to low level, output disable time from low level and transition time to low level

Waveform 3. Data and enable setup time and hold times

Notes to AC waveforms

1. For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
2. The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORMS

Input Pulse Definition

TEST	SWITCH
tpLz $^{\text {tpZL }}$	closed
tpZL	closed
All other	open

family	INPUT PULSE REQUIREMENTS					
	amplitude	$\mathbf{V}_{\mathbf{M}}$	rep. rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1.5 V	1 MHz	500 ns	2.5 ns	2.5 ns

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\stackrel{A}{\max }$	$\begin{gathered} A_{1} \\ \text { min. } \end{gathered}$	A_{2} max.	b	b_{1}	b_{2}	c	$D^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\begin{gathered} \mathbf{Z}^{(1)} \\ \text { max } \end{gathered}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	0.76
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.049 \\ & 0.033 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.030

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT38-4				\square ¢	$\begin{aligned} & 92-11-17 \\ & 95-01-14 \end{aligned}$

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	0.7 0.3	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.0100 \\ & 0.0075 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

outLine VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT109-1	076E07S	MS-012AC		- ¢	$\begin{aligned} & -95-01-25 \\ & 97-05-22 \end{aligned}$

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

