54FCT/74FCT544A

Octal Registered Transceiver

General Description

The 'FCT544A octal transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow. The 'FCT544A inverts data in both directions.

FACTTM FCTA utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.
FACT FCTA features undershoot correction and split ground bus for superior performance.

Features

- NSC 54FCT/74FCT544A is pin and functionally equivalent to IDT 54FCT/74FCT544A
- Back to back registers for storage separate controls for data flow in each direction
- Input clamp diodes to limit bus reflections
- TTL/CMOS input and output level compatible
$\mathrm{IOL}_{\mathrm{OL}}=64 \mathrm{~mA}$ (Com), 48 mA (Mil)
- CMOS power levels
- 4 kV minimum ESD immunity
- Military Product compliant to MIL-STD 883

Ordering Code: See Section 8

Logic Symbols

Connection Diagrams

TL/F/10669-3

Pin Names	Description
$\overline{\mathrm{OEAB}}$	A-to-B Output Enable Input (Active LOW)
$\overline{\mathrm{OEBA}}$	B-to-A Output Enable Input (Active LOW)
$\overline{\overline{C E A B}}$	A-to-B Enable Input (Active LOW)
$\overline{\mathrm{CEBA}}$	B-to-A Enable Input (Active LOW)
$\overline{\mathrm{LEAB}}$	A-to-B Latch Enable Input (Active LOW)
$\overline{\mathrm{LEBA}}$	B-to-A Latch Enable Input (Active LOW)
$\overline{\mathrm{A}}_{0}-\overline{\mathrm{A}}_{7}$	A-to-B Data Inputs or B-to-A
	TRI-STATE® Outputs
$\overline{\mathrm{B}}_{0}-\overline{\mathrm{B}}_{7}$	B-to-A Data Inputs or A-to-B
	TRI-STATE Outputs

Functional Description

The 'FCT544A contains two sets of eight D-type latches, with separate input and output controls for each set. For data flow from A to B, for example, the A-to-B Enable ($\overline{\mathrm{CEAB}}$) input must be LOW in order to enter data from $\overline{\mathrm{A}}_{0}-$ \bar{A}_{7} or take data from $\bar{B}_{0}-\bar{B}_{7}$, as indicated in the Data 1/O Control Table. With CEAB LOW, a LOW signal on the A-to-B Latch Enable ($\overline{\mathrm{LEAB}}$) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With $\overline{C E A B}$ and OEAB both LOW, the TRI-STATE B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the $\overline{C E B A}, \overline{L E B A}$ and $\overline{O E B A}$ outputs.

Data I/O Control Table

Input			Latch Status	Output Buffers
$\overline{\text { CEAB }}$	LEAB	$\overline{\text { OEAB }}$		
H	X	X	Latched	High-Z
X	H	X	Latched	
L	L	X	Transparent	
X	X	H		High-Z
L	X	L		Driving

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
A-to-B data flow shown; B-to-A flow control is the same, except using CEBA, $\overline{L E B A}$ and $\overline{O E B A}$.

Logic Diagram

TL/F/10669-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Recommended Operating

 Conditions| Supply Voltage $\left(V_{C C}\right)$ | 4.5 V to 5.5 V |
| :--- | ---: |
| $54 F C T A$ | 4.75 V to 5.25 V |
| 74FCTA | 0 V to V_{CC} |
| Input Voltage | 0 V to V_{CC} |
| Output Voltage | |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| 54FCTA | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| 74FCTA | |
| Junction Temperature $\left(T_{J}\right)$ | $175^{\circ} \mathrm{C}$ |
| CDiP | $140^{\circ} \mathrm{C}$ |

DC Characteristics for 'FCTA Family Devices

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

DC Characteristics for 'FCTA Family Devices (Continued)
Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: $\mathrm{Com}: \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} \& \multirow[t]{2}{*}{Parameter} \& \multicolumn{3}{|r|}{54FCTA/74FCTA} \& \multirow[t]{2}{*}{Units} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Conditions}}

\hline \& \& Min \& Typ \& Max \& \& \&

\hline ICCD \& Dynamic Power Supply Current (Note 4) \& \& 0.25 \& 0.3 \& mA/MHz \& $$
\begin{aligned}
& V_{C C}=\text { Max } \\
& \text { Outputs Open } \\
& \overline{C E A B}+\overline{O E A B}=\mathrm{GND} \\
& \overline{\mathrm{CEBA}}=V_{C C} \\
& \text { One Input Toggling } \\
& 50 \% \text { Duty Cycle } \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& V_{I N} \geq V_{H C} \\
& V_{I N} \leq 0.2 \mathrm{~V}
\end{aligned}
$$

\hline \multirow[t]{2}{*}{Ic} \& \multirow[t]{2}{*}{Total Power Supply Current (Note 6)} \& \& 1.5

1.8 \& 4.0

6.0 \& \multirow{2}{*}{mA} \& | $\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ |
| :--- |
| Outputs Open |
| $\mathrm{f}_{\mathrm{CP}}=10 \mathrm{MHz}$ |
| 50\% Duty Cycle |
| $\overline{C E A B}+\overline{\mathrm{OEAB}}=\mathrm{GND}$ |
| $\overline{C E B A}=V_{C C}$. |
| $\mathrm{f}_{\mathrm{CP}}=\overline{\mathrm{LEAB}}=10 \mathrm{MHz}$ |
| One Bit Toggling |
| at $f_{1}=5 \mathrm{MHz}$ |
| 50\% Duty Cycle | \& \[

$$
\begin{aligned}
& V_{I N} \geq V_{H C} \\
& V_{I N} \leq 0.2 \mathrm{~V}
\end{aligned}
$$
\]

$$
\begin{aligned}
& V_{\mathbb{I N}}=3.4 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}
\end{aligned}
$$

\hline \& \& \& 3.0

5.0 \& 16.5

21.75 \& \& | (Note 5) |
| :--- |
| $V_{C C}=M a x$ |
| Outputs Open |
| $\mathrm{f}_{\mathrm{CP}}=10 \mathrm{MHz}$ |
| 50\% Duty Cycle |
| $\overline{\mathrm{CEAB}}+\overline{\mathrm{OEAB}}=\mathrm{GND}$ |
| $\overline{C E B A}=V_{C C}$. |
| $\mathrm{f}_{\mathrm{CP}}=\overline{\mathrm{LEAB}}=10 \mathrm{MHz}$ |
| Eight Bits Toggling |
| at $f_{1}=5 \mathrm{MHz}$ |
| 50\% Duty Cycle | \& \[

$$
\begin{aligned}
& V_{I N} \geq V_{H C} \\
& V_{I N} \leq 0.2 \mathrm{~V}
\end{aligned}
$$
\]

$$
\begin{aligned}
& V_{I N}=3.4 V \\
& V_{I N}=G N D
\end{aligned}
$$

\hline
\end{tabular}

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.
Note 2: This parameter guaranteed but not tested.
Note 3: Per TTL driven input $\left(V_{I N}=3.4\right)$; all other inputs at $V_{C C}$ or GND.
Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
Note 5: Values for these conditions are examples of the ICC formula. These limits are guaranteed but not tested.
Note 6: $I_{C}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(\mathrm{fCP}^{2} / 2+I_{1} N_{1}\right)$
$I_{\text {cc }}=$ Quiescent Current
$\Delta \mathrm{ICC}_{\mathrm{C}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$
$\mathrm{D}_{\mathrm{H}}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of Inputs at D_{H}
ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)
$f^{\prime} \mathrm{CP}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{1}=$ Input Frequency
$\mathbf{N}_{\mathrm{I}}=$ Number of Inputs at f_{I}
All currents are in milliamps and all frequencies are in megahertz.

AC Electrical Characteristics: See Section 2 for Wavetorms

Symbol	Parameter	54FCTA/74FCTA	74FCTA	54FCTA	Units	Fig. No.	
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} T_{A}, V_{C C}=C o m \\ R_{L}=500 \Omega \\ C_{L}=50 p F \end{gathered}$	$\begin{gathered} T_{A}, V_{C C}=M \\| \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Typ	Min (Note 1) Max	Min Max			
${ }^{\text {tpLH }}$ tpHL	Propagation Delay Transparent Mode A_{n} to B_{n} or B_{n} to A_{n}		$1.5 \quad 7.0$		ns	2-8	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay LEAB to A_{n}, $\overline{\text { LEAB }}$ to B_{n}		1.58 .0		ns	2-8	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{O E B A}$ or $\overline{O E A B}$ to A_{n} or B_{n} $\overline{C E B A}$ or $\overline{C E A B}$ to A_{n} or B_{n}		1.59		ns	2-11	
$\begin{aligned} & \text { tphZ }^{\text {tpLZ }} \end{aligned}$	Output Disable Time $\overline{C E B A}$ or $\overline{O E A B}$ to A_{n} or B_{n} $\overline{C E B A}$ or $\overline{O E A B}$ to A_{n} or B_{n}		1.5		ns	2-11	
tsu	Setup Time High or Low A_{n} or B_{n} to $\overline{L E B A}$ or $\overline{\text { LEAB }}$		2		ns	2-10	
${ }^{\text {th }}$	Hold Time High or Low A_{n} or B_{n} to $\overline{\text { LEBA }}$ or $\overline{\text { LEAB }}$		2		ns	2-10	

Note 1: Minimum propagation delays are guaranteed but not tested.
Capacitance $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter (Note)	Typ	Max	Units	Conditions
C_{IN}	Input Capacitance	6	10	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	8	12	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Note: This parameter is measured at characterization but not tested.

