54FCT/74FCT573

Octal Latch with TRI-STATE ${ }^{\circledR}$
 Outputs

General Description

The 'FCT573 is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable ($\overline{O E}$) inputs.
FACTTM FCT utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.

FACT FCT features GTOTM output control and undershoot corrector in addition to a split ground bus for superior performance.
The 'FCT573 is functionally identical to the 'FCT373 but has inputs and outputs on opposite sides.

Features

- NSC 54/74FCT573 is pin and functionally equivalent to IDT 54/74FCT573
- TRI-STATE outputs for bus interfacing
- Input clamp diodes to limit bus reflections
- TTL/CMOS input and output level compatible
- lol $=48 \mathrm{~mA}$ (Com), 32 mA (Mil)
- CMOS power levels
- ESD immunity $\geq 4 \mathrm{kV}$ typ
- Military Product compliant to MIL-STD-883 and Standard Military Drawing \#5962-88639

Ordering Code: See Section 8

Logic Symbols

Connection Diagrams

IEEE/IEC

TL/F/10672-2

Pin Assignment for DIP, Flatpak and SOIC

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$\frac{L E}{O E}$	Latch Enable Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	TRI-STATE Output Enable Input

TL/F/10672-4

Functional Description

The FCT573 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, and the latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable ($\overline{(\overline{O E}) \text { input. When } \overline{O E} \text { is LOW, the latch contents are }}$ presented inverted at the outputs $\overline{\mathrm{O}}_{7}-\overline{\mathrm{O}}_{0}$. When $\overline{\mathrm{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

Inputs			Outputs
$\overline{O E}$	LE	D	$\mathbf{O}_{\boldsymbol{n}}$
L	H	H	H
L	H	L	L
L	L	X	O_{0}
H	X	X	Z

$H=$ HIGH Voltage
L = LOW Voltage
$Z=$ High Impedance
$X=$ Immaterial
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW transition of Latch Enable

Logic Diagram

TL/F/10672-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

[^0]
DC Characteristics for 'FCT Family Devices

Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$

Symbol	Parameter	54FCT/74FCT			Units	Conditions		
		Min	Typ	Max				
V_{IH}	Minimum High Level Input Voltage	2.0			V			
V_{IL}	Maximum Low Level Input Voltage			0.8	V			
${ }_{1 H}$	Input High Current			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\begin{aligned} & V_{1}=V_{C C} \\ & V_{1}=2.7 V \text { (Note 2) } \end{aligned}$	
I/L	Input Low Current			$\begin{aligned} & -5.0 \\ & -5.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$	$\begin{aligned} & V_{1}=0.5 V(\text { Note } 2) \\ & V_{1}=G N D \end{aligned}$	
loz	Maximum TRI-STATE Current			$\begin{array}{\|c\|} \hline 10.0 \\ 10.0 \\ -10.0 \\ -10.0 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=\mathrm{Max}$	$\begin{aligned} & V_{O}=V_{C C} \\ & V_{O}=2.7 \mathrm{~V} \text { (Note 2) } \\ & V_{O}=0.5 \mathrm{~V} \text { (Note 2) } \\ & V_{O}=G N D \end{aligned}$	
V_{IK}	Clamp Doide Voltage		-0.7	-1.2	V	$V_{C C}=M i n ; I_{N}=-1$	mA	
los	Short Circuit Current	-60-120			mA	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 1); $\mathrm{V}_{\mathrm{O}}=$ GND		
$\mathrm{VOH}^{\text {O }}$	Minimum High Level Output Voltage	2.83 .0			V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\text {IN }}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{HC}} ; \mathrm{l}_{\mathrm{OH}}=-32 \mu \mathrm{~A}$		
		$\begin{array}{\|ll\|} \hline \mathrm{V}_{\mathrm{HC}} & \mathrm{~V}_{\mathrm{CC}} \\ \hline \end{array}$				$\begin{aligned} & V_{C C}=M i n \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-300 \mu \mathrm{~A}$	
		2.4	4.3				$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$ (Mil)	
		2.4	4.3				$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$ (COm)	
V_{OL}	Maximum Low Level Output Voltage	GND 0.2 GND 0.2 0.50 0.3 0.50			V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{HC}} \mathrm{l}_{\mathrm{OL}}=300 \mu \mathrm{~A}$		
					$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=300 \mu \mathrm{~A} \\ & \mathrm{lOL}=32 \mathrm{~mA}(\mathrm{Mil}) \\ & \mathrm{lOL}=48 \mathrm{~mA} \text { (Com) } \end{aligned}$		
ICC	Maximum Quiescent Supply Current		0.001	1.5		mA	$\begin{array}{\|l} \hline V_{C C}=M a x \\ V_{I N} \geq V_{H C}, V_{I N} \leq 0.2 \\ f_{I}=0 \\ \hline \end{array}$	
$\Delta l_{\text {CC }}$	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	$\begin{aligned} & V_{c c}=M a x \\ & V_{I N}=3.4 V(\text { Note } 3) \end{aligned}$		
$I_{\text {CCD }}$	Dynamic Power Supply Current (Note 4)		0.25	0.45	$\mathrm{mA} / \mathrm{MHz}$	$V_{C C}=$ Max Outputs Open One Input Toggling 50\% Duty Cycle $\overline{O E}=\mathrm{GND}$ $\mathrm{LE}=\mathrm{V}_{\mathrm{CC}}$	$\begin{aligned} & V_{I N} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$	

DC Characteristics for 'FCT Family Devices (Continued)
Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$

Symbol	Parameter	74FCT			Units	Conditions	
		Min	Typ	Max			
Ic	Total Power Supply Current (Note 6)	$\begin{array}{ll}1.5 & 4.5 \\ 1.8 & 5.0\end{array}$			mA	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { Outputs Open } \\ & O \mathrm{OE}=\mathrm{GND}, \mathrm{LE}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{fCP}=10 \mathrm{MHz} \\ & \mathrm{One} \text { Bit Toggling } \\ & 50 \% \text { Duty Cycle } \end{aligned}$	$\begin{aligned} & V_{I N} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$
					$\begin{aligned} & V_{I N}=3.4 V \\ & V_{I N}=G N D \end{aligned}$		
			3.0	8.0		(Note 5) $V_{C C}=$ Max Outputs Open $\overline{O E}=G N D, L E=V_{C C}$	$\begin{aligned} & V_{I N} \geq V_{H C} \\ & V_{I N} \leq 0.2 V \end{aligned}$
				14.5		$\mathrm{f}_{\mathrm{CP}}=2.5 \mathrm{MHz}$ Eight Bits Toggling 50\% Duty Cycle	$\begin{aligned} & V_{I N}=3.4 V \\ & V_{I N}=G N D \end{aligned}$

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.
Note 2: This parameter guaranteed but not tested.
Note 3: Per TTL driven input ($V_{I N}=3.4 \mathrm{~V}$); all other inputs at $V_{C C}$ or GND.
Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
Note 5: Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
Note 6: $\mathrm{I}_{\mathrm{C}}=$ I IQUIESCENT $+\mathrm{I}_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{C P} / 2+f_{1} N_{1}\right)$
${ }^{1}$ CC = Quiescent Current
$\Delta l_{C C}=$ Power Supply Current for a TTL High Input ($V_{I N}=3.4 \mathrm{~V}$)
$\mathrm{D}_{\mathrm{H}}=$ Duty Cycle for TTL inputs High
$N_{T}=$ Number of Inputs at D_{H}
$I_{C C D}=$ Dynamic Current caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{\mathrm{CP}}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{j}=$ input Frequency
$N_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.
Note 7: For 54FCT, ICCD $=0.40 \mathrm{~mA} / \mathrm{MHz}$.
Refer to applicable standard military drawing or NSC Table Ifor test conditions and IC/ICC limits.
AC Electrical Characteristics: See Section 2 for Waveforms

Symbol	Parameter	54/74FCT					Units	Fig. No.
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} T_{A}, V_{C C}=C o m \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \\ \hline \operatorname{Min}(\text { Note }) \mathrm{Max} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{MiI} \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$			
		Typ			Min	Max		
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to O_{n}	5.0	1.5	8.0	1.5	8.5	ns	2-8
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay LE to O_{n}	9.0	2.0	13.0	2.0	15.0	ns	2-8
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	7.0	1.5	12.0	1.5	13.5	ns	2-11
$\begin{aligned} & t_{\text {PHZ }} \\ & t_{\mathrm{tpLZ}} \\ & \hline \end{aligned}$	Output Disable Time	6.0	1.5	7.5	1.5	10.0	ns	2-11
${ }^{\text {ts }}$	Setup Time High or Low, D_{n} to LE	1.0	2.0		2.0		ns	2-10
t_{H}	Hold Time High or Low, D_{n} to LE	1.0	1.5		1.5		ns	2-10
tw	LE Pulse Width High or Low	5.0	6.0		6.0		ns	$2-9$

Note: Minimum limits are guaranteed but not tested on propagation delays.

Capacitance $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right.$)

Symbol	Parameter	Typ	Max	Units	Conditions
$\mathrm{C}_{\mathbb{I}}$	Input Capacitance	6	10	pF	$\mathrm{V}_{\mathbb{N}}=\mathrm{OV}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	8	10	pF	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{OV}$

Note: This parameter is measured at characterization but not tested.
Cout for 74FCT only.

[^0]: Absolute Maximum Rating (Note 1)
 If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallablity and specifications.
 Terminal Voltage with Respect to GND (VTERM)

 | 54FCT | -0.5 V to +7.0 V |
 | :--- | ---: |
 | 74FCT | -0.5 V to +7.0 V |
 | Temperature under Bias (TBIAS) | $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ |
 | 54FCT | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
 | 74FCT | |
 | Storage Temperature (TSTG) | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
 | 54FCT | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
 | 74FCT | 0.5 W |

 DC Ouput Current (lout)
 120 mA
 Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Exposure to absolute maximum rating conditions for extended periods may affect reliability. The databook specifications should be met, without exception, to ensure that the system design is rellable over its power supply, temperature, and output/input loading variables.

