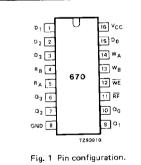
4 x 4 REGISTER FILE; 3-STATE

FEATURES


- Simultaneous and independent read and write operations
- Expandable to almost any word size and bit length
- Output capability: bus driver ٠
- ICC category: MSI •

GENERAL DESCRIPTION

The 74HC/HCT670 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT670 are 16-bit 3-state register files organized as 4 words of 4 bits each. Separated read and write address inputs (R_A , R_B and W_A , W_B) and enable inputs (R_E and W_E) are available, permitting simultaneous writing into one word location and reading from another location. The 4-bit word to be stored is presented to four data inputs (D_0 to D_3). The W_A and W_B inputs determine the location of the stored word. When the \overline{WE} input is LOW, the data is entered into the addressed location. The addressed location remains transparent to the data while the WE input is LOW. Data supplied at the inputs will be read out in true (non-inverting) form from the 3-state outputs $(Q_0 \text{ to } Q_3)$. $D_n \text{ and } W_n \text{ inputs are inhibited when WE is HIGH.}$

Direct acquisition of data stored in any Direct acquisition of data stored in any of the four registers is made possible by individual read address inputs (R_A and R_B). The addressed word appears at the four outputs when the RE is LOW. Data outputs are in the high impedance OFF-state when RE is HIGH. This permits outputs to be tied together to increase the word capacity to very large numbers.

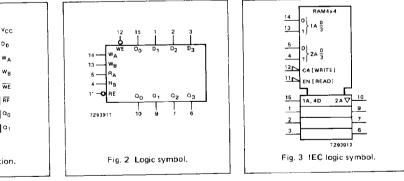
(continued on next page)

			ТҮР		
SYMBOL	PARAMETER	CONDITIONS	нс	нст	UNIT
tPHL/ tPLH	propagation delay D _B to Q _B	C _L = 15 pF V _{CC} = 5 V	23	23	ns
CI	input capacitance		3.5	3.5	рF
CPD	power dissipation capacitance per package	notes 1 and 2	122	124	рF

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

Notes

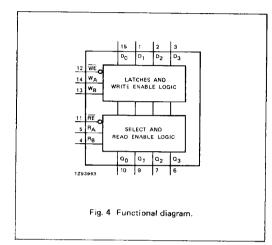
- 1. CPD is used to determine the dynamic power dissipation (PD in μ W):
 - $PD = CPD \times VCC^2 \times f_i + \Sigma (CL \times VCC^2 \times f_0)$ where: CL = output load capacitance in pF VCC = supply voltage in V


 - $f_i = input frequency in MHz$ $f_0 = output frequency in MHz$
- $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$
- For HC the condition is VI = GND to VCC For HCT the condition is VI = GND to VCC 1.5 V

PACKAGE OUTLINES 16-lead DIL.; plastic (SOT38Z).

16-lead mini-pack; plastic (SO16; SOT109A).

PIN DESCRIPTION


PIN NO.	SYMBOL	L NAME AND FUNCTION				
5, 4 8	R _A , R _B GND	read address inputs ground (0 V)				
10, 9, 7, 6	00 to 03	data outputs 3-state output read enable input (active LOW)				
11 12	RE	write enable input (active LOW)				
14, 13	W _A , W _B	write address inputs				
15, 1, 2, 3	D ₀ to D ₃	data inputs				
16	Vcc	positive supply voltage				

777 December 1990

74HC/HCT670

MSI

WRITE MODE SELECT TABLE

OPERATING	INP	UTS	INTERNAL
MODE	WE	Dn	LATCHES*
write data	L L	L H	L H
data latched	н	х	no change

* The write address (W_A and W_B) to the "internal latches" must be stable while WE is LOW for conventional operation.

READ MODE SELECT TABLE

OPERATING		INPUTS	ουτρυτ	
MODE	RE	INTERNAL LATCHES**	0 _n	
read	L L	L H	L H	
disabled	н	х	z	

** The selection of the "internal latches" by read address (R_A and R_B) are not constrained by WE or RE operation.

778

H = HIGH voltage level L = LOW voltage level X = don't care Z = high impedance OFF-state


January 1986

GENERAL DESCRIPTION (Cont'd)

GENERAL DESCHIPTION (Cont'd) Design of the read enable signals for the stacked devices must ensure that there is no overlap in the LOW levels which would cause more than one output to be active at the same time. Parallel expansion to generate n-bit words is accomplished by driving the enable and address inputs of each device in parallel.

4 x 4 register file; 3-state

March 1988

779

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: bus driver ICC category: MSI

-

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \text{ V; } t_r = t_f = 6 \text{ ns; } C_L = 50 \text{ pF}$

		T _{amb} (°C)								TEST CONDITIONS		
SYMBOL	PARAMETER	PARAMETER 74HC]							
			+25		40	to +85	-40 t	o +125	UNIT	Vcc V	WAVEFORMS	
		min.	typ.	max.	mìn.	max.	min.	max,	1			
^t PHL/ ^t PLH	propagation delay R _A , R _B to Q _R		58 21 17	195 39 33		245 49 42		295 59 50	ns	2.0 4.5 6.0	Fig. 6	
^t РНL/ tРLН	p <u>rop</u> agation delay WE to Q _n		77 28 22	250 50 43		315 63 54		375 75 64	ns	2.0 4.5 6.0	Fig. 7	
^t PHL [/]	propagation delay D _n to Q _n		74 27 22	250 50 43		315 63 54		375 75 64	ns	2.0 4.5 6.0	Fig. 7	
^{tp} ZH/ ^t PZL	3-state output enable time RE to Q _n		39 14 11	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig. 9	
^t PHZ/ tPLZ	3-state output disable time RE to Q _n		47 17 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig. 9	
tTHL/ tTLH	Output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig. 6	
tw	write enable pulse width LOW	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 8	
t _{su}	set-up time D _n to WE	60 12 10	3 1 1		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig. 8	
t _{su}	set-up time W _A , W _B to WE	60 12 10	6 2 2		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig. 8	
t _h	hold time D _n to WE	5 5 5	0 0 0		5 5 5		5 5 5		ns	2.0 4.5 6.0	Fig. 8	
th	hold time W_A, W_B to \overline{WE}	5 5 5	0 0 0		5 5 5		5 5 5		ns	2.0 4.5 6.0	Fig. 8	
Hatch	latch time WE to R _A , R _B	100 20 17	28 10 8		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig. 8	

780

.

March 1988

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: bus driver ICC category: MSI

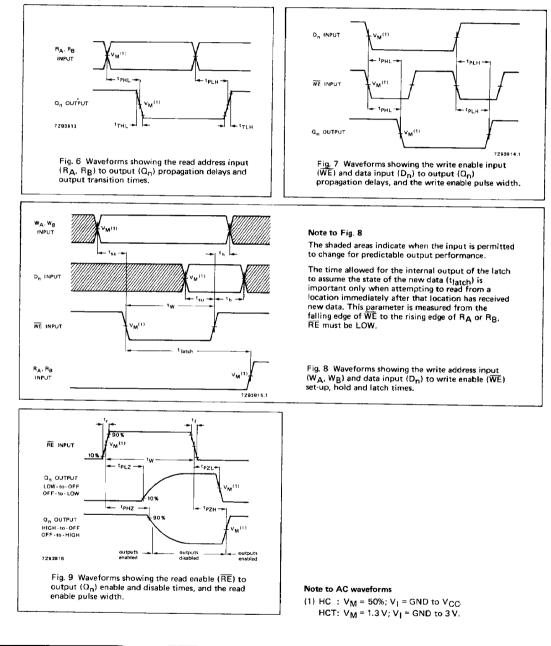
Note to HCT types

The value of additional quiescent supply current (Δ ICC) for a unit load of 1 is given in the family specifications. To determine Δ ICC per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD	IN	PUT	UNIT LOAD COEFFICIENT		
Dn WE, WA WB	0.25 0.40 0.60	RA RE	i.	0.70 1.10 1.35		

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$


		T _{amb} (℃)							TEST CONDITIONS		
SYMBOL					74HC	HCT	UNIT	Vcc	WAVEFORMS		
	PARAMETER	+25		-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.]		
tPHL/ tPLH	propagation delay B_A , B_B to Q_n		21	40		50		60	ns	4.5	Fig. 6
tPHL/ tPLH	propagation delay WE to Q _n		28	50		63		75	ns	4.5	Fig. 7
^t PHL [/] ^t PLH	propagation delay D_n to Q_n		27	50		63		75	ns	4.5	Fig. 7
^t PZH [/] ^t PZL	$\frac{3\text{-state output enable time}}{RE \text{ to } \Omega_n}$		18	35		44		53	ns	4.5	Fig. 9
tPHZ/ tPLZ	$\frac{3\text{-state output disable time}}{\text{RE to } Q_n}$		19	35		44		53	ns	4.5	Fig. 9
tthl/ ttlh	output transition time		5	12		15		18	ns	4.5	Fig. 6
tw	write enable pulse width LOW	18	9		23		27		ns	4.5	Fig. 8
t _{su}	set-up time D _n to WE	12	4		15		18	1	ns	4.5	Fig. 8
t _{su}	set-up time WA, WB to WE	12	-2		15		18		ns	4.5	Fig. 8
th	hold time D _n to WE	5	-1		5		5		ns	4.5	Fig. 8
th	hold time W _A , W _B to WE	5	0		5		5		ns	4.5	Fig. 8
tlatch	latch time WE to R _A , R _B	25	11		31		38		ns	4.5	Fig. 8

March 1988

This Material Copyrighted By Its Respective Manufacturer

781

AC WAVEFORMS

782 January 1986

January 1900