74LCX574

Low Voltage Octal D-Type Flip-Flop with 5V Tolerant Inputs and Outputs

General Description

The LCX574 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable ($\overline{\mathrm{OE}})$. The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

The LCX574 is functionally identical to the LCX374 except for the pinouts.
The LCX574 is designed for low voltage (3.3V) V_{CC} applications with capability of interfacing to a 5 V signal environment. The LCX574 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5 V tolerant inputs and outputs
- 7.5 ns $\mathrm{t}_{\mathrm{PD}} \max , 10 \mu \mathrm{~A} \mathrm{I}_{\mathrm{CCQ}} \max$
- Power down high impedance inputs and outputs
- Supports live insertion/withdrawal
- $2.0 \mathrm{~V}-3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ supply operation
- $\pm 24 \mathrm{~mA}$ output drive
- Implements patented noise/EMI reduction circuitry
- Functionally compatible with 74 series 574
- Latch-up performance exceeds 500 mA
- ESD performance:
Human body model > 2000V
Machine model > 200V
Ordering Code:

Order Number	Package Number	Package Description
74LCX574WM	M20B	20-Lead (0.300" Wide) Molded Small Outline Package SOIC JEDEC
74LCX574SJ	M20D	20-Lead Molded Small Outline Package SOIC EIAJ
74LCX574MSA	MSA20	20-Lead Molded Shrink Small Outline Package SSOP Type II
74LCX574MTC	MTC20	20-Lead Thin Shrink Small Outline Package TSSOP JEDEC

Device also available in Tape and Reel. Specify by appending the suffix letter " X " to the ordering code.

Connection Diagram

Pin Assignment for SOIC, SSOP and TSSOP

Logic Symbol

Pin Descriptions

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs
CP	Clock Pulse Input
$\overline{\mathrm{OE}}$	3-STATE Output Enable $\mathrm{O}_{0}-\mathrm{O}_{7}$
Input 3-STATE Outputs	

Truth Tables

Inputs			Internal	Outputs	Function
$\mathbf{O E}$	CP	D	\mathbf{Q}	$\mathbf{O}_{\mathbf{N}}$	
H	H	L	NC	Z	Hold
H	H	H	NC	Z	Hold
H	\sim	L	L	Z	Load
H	\sim	H	H	Z	Load
L	\sim	L	L	L	Data Available
L	\sim	H	H	H	Data Available
L	H	L	NC	NC	No Change in Lata L
	H	H	NC	NC	No Change in Data

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$Z=$ High Impedance
$\widetilde{\sim}=$ LOW-to-HIGH Transition
NC = No Change

Functional Description

The LCX574 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time require-
ments on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}}$) LOW, the contents of the eight flip-flops are available at the outputs. When OE is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Value	Conditions	Units
$\mathrm{V}_{\text {CC }}$	Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{0}	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	Output in High or Low State (Note 2)	V
I_{IK}	DC Input Diode Current	-50	$\mathrm{V}_{1}<$ GND	mA
I_{OK}	DC Output Diode Current	$\begin{array}{r} \hline-50 \\ +50 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}<\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \end{aligned}$	mA
I_{0}	DC Output Source/Sink Current	± 50		mA
I_{CC}	DC Supply Current per Supply Pin	± 100		mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 100		mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 3)

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage	2.0	3.6	V
		1.5	3.6	
V_{1}	Input Voltage	0	5.5	V
V_{O}	Output Voltage	0	V_{CC}	V
		0	5.5	
$\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$	Output Current $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$		± 24	mA
	$V_{C C}=2.7 \mathrm{~V}$			
$\mathrm{T}_{\text {A }}$	Free-Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{1 \mathrm{~N}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	ns / V

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating
Conditions" table will define the conditions for actual device operation.
Note 2: I_{0} Absolute Maximum Rating must be observed.
Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
$\mathrm{V}_{1 \mathrm{H}}$	HIGH Level Input Voltage		2.7-3.6	2.0		V
V_{IL}	LOW Level Input Voltage		2.7-3.6		0.8	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.7-3.6	$\mathrm{V}_{\text {cc }}-0.2$		V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		V
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		V
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{I}_{\text {OL }}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	V
		$\mathrm{I}_{\text {OL }}=12 \mathrm{~mA}$	2.7		0.4	V
		$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0		0.4	V
		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	V
1	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
loz	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
Ioff	Power-Off Leakage Current	V_{1} or $\mathrm{V}_{0}=5.5 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {cc }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2.7-3.6		10	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {cc }}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		500	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$				Units
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$		
		Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	150				MHz
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	1.5	8.5	1.5	9.5	ns
$\mathrm{t}_{\mathrm{PLH}}$	$\mathrm{CP} \text { to } \mathrm{O}_{\mathrm{n}}$	1.5	8.5	1.5	9.5	
$\mathrm{t}_{\text {PZL }}$	Output Enable Time	1.5	8.5	1.5	9.5	ns
$\mathrm{t}_{\mathrm{PZH}}$		1.5	8.5	1.5	9.5	
$t_{\text {PLZ }}$	Output Disable Time	1.5	6.5	1.5	7.0	ns
$\mathrm{t}_{\mathrm{PHZ}}$		1.5	6.5	1.5	7.0	
t_{5}	Setup Time	2.5		2.5		ns
t_{H}	Hold Time	1.5		1.5		ns
t_{W}	Pulse Width	3.3		3.3		ns
$\mathrm{t}_{\mathrm{OSHL}}$ tosth	Output to Output Skew (Note 4)		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			ns

Note 4: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (tOSHL) or LOW to HIGH (tOSLH).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak V_{OL}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	-0.8	V

Capacitance

Symbol	Conditionseter	Typical	Units	
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	25	pF

\square

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead (0.300 " Wide) Molded Small Outline Package, JEDEC Package Number M20B

20-Lead Molded Small Outline Package, EIAJ (SJ)
Package Number M20D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Molded Shrink Small Outline Package, EIAJ, Type II Package Number MSA20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS METRIC ONLY

LAND PATTERN RECOMMENDATION

MTC20 (REV C)
20-Lead Thin Shrink Small Outline Package, JEDEC
Package Number MTC20

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

