74LCX646

Low-Voltage Octal Transceiver/Register with 5V Tolerant Inputs and Outputs

General Description

The LCX646 consists of registered bus transceiver circuits, with outputs, D-type flip-flops, and control circuitry providing multiplexed transmission of data directly from the input bus or from the internal storage registers. Data on the A or B bus will be loaded into the respective registers on the LOW-to-HIGH transition of the appropriate pin (CPAB or CPBA). The four fundamental handling functions available are illustrated in Figure 1 through Figure 4.
The LCX646 is designed for low voltage (3.3V) V_{CC} applications with capability of interfacing to a 5 V signal environment.
The LCX646 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs

■ Ideal for low power/low noise 2.7 V to 3.6 V applications
© Power-down static overvoltage protection on inputs and outputs

- Outputs source/sink 24 mA
- Guaranteed simultaneous switching noise level
- Available in SOIC JEDEC and TSSOP
- Implements patented Quiet Series noise/EMI reduction circuitry
- Functionally compatible with the 74 series 646
- Latch performance exceeds 300 mA
- ESD performance:

Human body Model > 2000V
Machine Model > 250V

Ordering Code: See Section 11
Logic Symbols

IEEE/IEC

Connection Diagram
Pin Assignment for SOIC and TSSOP

	SOIC JEDEC	TSSOP JEDEC
Order Number	74LCX646WM	
	74LCX646WMX	74LCX646MTCX
See NS Package Number	M24B	MTC24

Preliminary Data: National Semiconductor reserves the right to make changes at any time without notice.

FIGURE 1

FIGURE 2

FIGURE 3

Function Table (Note)

Inputs						Data 1/O		Function
$\overline{\mathbf{G}}$	DIR	CPAB	CPBA	SAB	SBA	$A_{0}-A_{7}$	$B_{0}-B_{7}$	
H H H	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\underset{X}{\text { H or L }}$	Hor L X r	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & \hline \end{aligned}$	Input	Input	Isolation Clock A_{n} Data into A Register Clock B_{n} Data into B Register
L L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\underset{\text { HorL }}{\frac{\mathrm{X}}{-} \text {, }}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	Input	Output	A_{n} to B_{n}-Real Time (Transparent Mode) Clock A_{n} Data into A Register A Register to B_{n} (Stored Mode) Clock A_{n} Data into A Register and Output to B_{n}
L L L L	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\underset{\sim}{\text { HorL }}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	Output	Input	B_{n} to A_{n}-Real Time (Transparent Mode) Clock B_{n} Data into B Register B Register to A_{n} (Stored Mode) Clock B_{n} Data into B Register and Output to A_{n}

Note: The data output functions may be enabled or disabled by various signals at the \bar{G} and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs.
$H=$ HIGH Voltage Level $\quad X=$ Immaterial $\quad L=$ LOW Voltage Level $\quad \rho=$ LOW-to-HIGH Transition

Logic Diagram

TL/F/11997-8
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Input Voltage (V_{1})	-0.5 V to +7.0 V
Output Voltage (V)	
Outputs TRI-STATE®	-0.5 V to +7.0 V
Outputs Active (Note 2) -0	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current (lıK) $\mathrm{V}_{1}<0$	-50 mA
DC Output Diode Current (lok)	
$\mathrm{V}_{\mathrm{O}}<0$	-50 mA
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{Cc}}$	$+50 \mathrm{~mA}$
DC Output Source/Sink Current ($\mathrm{lOH}^{\prime} / \mathrm{loL}$	-L $\pm 50 \mathrm{~mA}$
DC V ${ }_{C C}$ or Ground Current per Supply Pin (ICc or IGND)	$\pm 100 \mathrm{~mA}$

Storage Temperature Range ($\mathrm{T}_{\text {STG }}$) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: Io Absolute Maximum Rating must be observed.

Recommended Operating Conditions

Supply Voltage	
Operating	2.0 V to 3.6 V
Data Retention Only	1.5 V to 3.6V
Input Voltage (V_{1})	OV to 5.5V
Output Voltage (V_{0})	
Output in Active State	OV to V_{cc}
Output in "OFF" State	OV to 5.5 V
Output Current $\mathrm{IOH}^{\text {/ }} \mathrm{OL}$	
$\mathrm{V}_{\text {cc }}=3.0 \mathrm{~V}$ to 3.6V	$\pm 24 \mathrm{~mA}$
$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to 3.0 V	$\pm 12 \mathrm{~mA}$
Free Air Operating Temperature (T_{A})	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Ratge ($\Delta t / \Delta \mathrm{V}$)	
$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ to 2.0V, $\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$	$10 \mathrm{~ns} / \mathrm{V}$

DC Electrical Characteristics

Symbol	Parameter	$V_{c c}$ (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Max		
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2.7-3.6	2.0		V	$\begin{aligned} & \mathrm{V}_{\text {OUT }} \leq 0.1 \mathrm{~V} \text { or } \\ & \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$V_{\text {IL }}$	Low Level Input Voltage	2.7-3.6		0.8		
V OH	High Level Output Voltage	$\begin{array}{c\|} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.2 \\ 2.4 \\ 2.2 \\ \hline \end{gathered}$		V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$
V_{OL}	Low Level Output Voltage	$\begin{array}{c\|} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ \hline \end{array}$		$\begin{gathered} 0.2 \\ 0.4 \\ 0.55 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{IOL}=12 \mathrm{~mA} \\ & \mathrm{IOL}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
11	Input Leakage Current	2.7-3.6		± 5.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$
102	TRI-STATE I/O Leakage	2.7-3.6		± 5.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{1 \mathrm{H}}\right.$ or $\left.\mathrm{V}_{\mathrm{IL}}\right)$
IOFF	Power Off Leakage Current	0		100	$\mu \mathrm{A}$	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$
ICC	Quiescent Supply Current	2.7-3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND
				± 10	$\mu \mathrm{A}$	$3.6 \leq\left(V_{1}, V_{0}\right) \leq 5.5 \mathrm{~V}$
$\Delta l_{\text {c }}$	Increase in Icc per Input	2.7-3.6		500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$

AC Electrical Characteristics: See Section 2 for Test Methodology					
Symbol	Parameter	$V_{C C}$ (V)	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Max (Note 2)	
${ }^{\text {tpHL, }}$ tpLH	Propagation Delay Bus to Bus	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \\ & \hline \end{aligned}$	ns
$t_{\text {PHL }}$, $t_{\text {PLH }}$	Propagation Delay Clock to Bus	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \\ & \hline \end{aligned}$	ns
$t_{\text {PHL }}$, tple	Propagation Delay SAB or SBA to A_{n} or B_{n}	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}}, \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time \bar{G} to A_{n} or B_{n}	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpHZ } \text {, } \\ & \text { tplZ }^{2} \end{aligned}$	Output Disable Time $\overline{\mathrm{G}}$ to A_{n} or B_{n}	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}}, \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time DIR to A_{n} or B_{n}	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}}, \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time DIR to A_{n} or B_{n}	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \\ & \hline \end{aligned}$	ns
ts	Setup Time	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$		ns
t_{H}	Hold Time	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$		ns
${ }_{\text {tw }}$	Pulde Width	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$		ns
toshl. tosLh	Output to Output Skew (Note 1)	3.0		1.0	ns

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (LOSHU) or LOW to HIGH (LOSLH). Parameter guaranteed by design.
Note 2: The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.

Dynamic Switching Characteristics: See Section 2 for Test Methodology

Symbol	Parameter	VCC (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units	Conditions
			Typical		
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	3.3	0.8	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$
VoLV	Quiet Output Dynamic Valley V ${ }_{\text {OL }}$	3.3	0.8	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$

Capacitance

Symbol	Parameter	Typical	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance	7	pF	$\begin{aligned} & V_{C C}=\text { Open } \\ & V_{1}=O V \text { or } V_{C C} \end{aligned}$
$\mathrm{Cl}_{1 / \mathrm{O}}$	Input/Output Capacitance	8	pF	$\begin{aligned} & V_{C C}=3.3 V \\ & V_{1}=0 \mathrm{~V} \text { or } V_{C C} \end{aligned}$
CPD	Power Dissipation Capacitance	32	pF	$\begin{aligned} & V_{C C}=3.3 \mathrm{~V} \\ & V_{1}=0 \mathrm{~V} \text { or } V_{C C} \\ & F=10 \mathrm{MHz} \\ & \hline \end{aligned}$

