54LS/74LS181
 4-BIT ARITHMETIC LOGIC UNIT

DESCRIPTION - The '181 is a 4-bit Arithmetic Logic Unit (ALU) which can perform all the possible 16 logic operations on two variables and a variety of arithmetic operations. For improved TTL, S-TTL and LP-TTL versions, please see the 9341 data sheet.

- PROVIDES 16 ARITHMETIC OPERATIONS ADD, SUBTRACT, COMPARE, DOUBLE, PLUS TWELVE OTHER ARITHMETIC OPERATIONS
- PROVIDES ALL 16 LOGIC OPERATIONS OF TWO VARIABLES EXCLUSIVE-OR, COMPARE, AND, NAND, OR, NOR, PLUS TEN OTHER LOGIC OPERATIONS
- FULL LOOKAHEAD FOR HIGH SPEED ARITHMETIC OPERATION ON LONG WORDS

ORDERING CODE: See Section 9

PKGS	PIN OUT	COMMERCIAL GRADE	MILITARY GRADE	PKG TYPE
		$\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V C C=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	
Plastic DIP (P)	A	74LS181PC		9N
Ceramic DIP (D)	A	74LS181DC	54LS181DM	6N
Flatpak (F)	A	74LS181FC	54LS181FM	4M

$$
\begin{aligned}
& \text { VCC }=\operatorname{Pin} 24 \\
& \text { GND }=\operatorname{Pin} 12
\end{aligned}
$$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74LS (U.L.) HIGH/LOW
$\bar{A}_{0}-\bar{A}_{3}$	Operand Inputs (Active LOW)	1.5/0.75
$\bar{B}_{0}-\bar{B}_{3}$	Operand Inputs (Active LOW)	1.5/0.75
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Function Select Inputs	2.0/1.0
M	Mode Control Input	0.5/0.25
	Carry Input	2.5/1.25
$\bar{F}_{0}-\bar{F}_{3}$	Function Outputs (Active LOW)	10/5.0
		(2.5)
$A=B$	Comparator Output	OC*/5.0
		(2.5)
$\overline{\mathrm{G}}$	Carry Generate Output (Active LOW)	10/10
$\overline{\mathrm{P}}$	Carry Propagate Output (Active LOW)	10/5.0
C_{n+4}	Carry Output	$\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$

FUNCTIONAL DESCRIPTION - The 'LS181 is a 4-bit high speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select inputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$) and the Mode Control input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active HIGH or active LOW operands. The Function Table lists these operations.

When the Mode Control input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4-bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the $C_{n}+4$ output, or for carry lookahead between packages using the signals $\overline{\mathrm{P}}$ (Carry Propagate) and $\overline{\mathrm{G}}$ (Carry Generate). In the ADD mode, $\overline{\mathrm{P}}$ indicates that \bar{F} is 15 or more, while \bar{G} indicates that \bar{F} is 16 or more. In the SUBTRACT mode, \bar{P} indicates that \bar{F} is zero or less, while \bar{G} indicates that \bar{F} is less than zero. \bar{P} and \bar{G} are not affected by carry in. When speed requirements are not stringent, it can be used in a simple ripple carry mode by connecting the Carry output ($C_{n}+4$) signal to the Carry input (C_{n}) of the next unit. For high speed operation the device is used in conjunction with the 9342 or $93 S 42$ carry lookahead circuit. One carry lookahead package is required for each group of four 'LS181 devices. Carry lookahead can be provided at various levels and offers high speed capability over extremely long word lengths.

The $A=B$ output from the device goes HIGH when all four \bar{F} outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the subtract mode. The $A=B$ output is open-collector and can be wired-AND with other $A=B$ outputs to give a comparison for more than four bits. The $A=B$ signal can also be used with the $C_{n}+4$ signal to indicate $A>B$ and $A<B$.

The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2 s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus a carry is generated when there is no underflow and no carry is generated when there is underflow. As indicated, this device can be used with either active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

FUNCTION TABLE

MODE SELECT INPUTS				ACTIVE LOW OPERANDS \& F_{n} OUTPUTS		ACTIVE HIGH OPERANDS \& F_{n} OUTPUTS	
S3	S2	S1	So	$\begin{aligned} & \text { LOGIC } \\ & (M=H) \end{aligned}$	ARITHMETIC** $(M=L)\left(C_{n}=L\right)$	$\begin{aligned} & \text { LOGIC } \\ & (M=H) \end{aligned}$	ARITHMETIC** $(M=L)\left(C_{n}=H\right)$
L	L	L	L	\bar{A}	A minus 1	$\overline{\mathrm{A}}$	A
L	L	L	H	$\overline{A B}$	$A B$ minus 1	$\overline{A+B}$	$A+B$
L	L	H	L	$\overline{A+B}$	$A \bar{B}$ minus 1	$\bar{A} B$	$A+\bar{B}$
L	L	H	H	Logic 1	minus 1	Logic 0	minus 1
L	H	L	L	$\overline{A+B}$	A plus ($A+\bar{B}$)	$\overline{\mathrm{AB}}$	A plus $A \bar{B}$
L	H	L	H	百	$A B$ plus $(A+\bar{B})$	\bar{B}	$(A+B)$ plus $A \bar{B}$
L	H	H	L	$\overline{A \oplus}$	A minus B minus 1	$A \oplus B$	A minus B minus 1
L	H	H	H	$A+\bar{B}$	$A+\bar{B}$	$A \bar{B}$	$A B$ minus 1
H	L	L	L	$\bar{A} B$	A plus ($A+B$)	$\bar{A}+B$	A plus $A B$
H	L	L	H	$A \oplus B$	A plus B	$\overline{A \oplus B}$	A plus B
H	L	H	L	B	$A \bar{B}$ plus ($A+B$)	B	$(A+\bar{B})$ plus $A B$
H	L	H	H	$A+B$	$A+B$	AB	$A B$ minus 1
H	H	L	L	Logic 0	A plus A^{*}	Logic 1	A plus A^{*}
H	H	L	H	$A \bar{B}$	$A B$ plus A	$A+\bar{B}$	$(A+B)$ plus A
H	H	H	L	$A B$	$A \bar{B}$ minus A	$A+B$	$(A+\bar{B})$ plus A
H	H	H	H	A	A	A	A minus 1

-each bit is shifted to the next more significant position " arithmetic operations expressed in $2 s$ complement notation

SYMBOL	PARAMETER		54/74LS		UNITS	CONDITIONS
			Min	Max		
IOH	Output HIGH Current, A = B			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Min}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$
Icc	Power Supply Current	XM		$\begin{aligned} & 32 \\ & 34 \end{aligned}$	mA	$\mathrm{Vcc}=\mathrm{Max}$ $\bar{B}_{n}, C_{n}=$ Gnd $\mathrm{S}_{\mathrm{n}}, \mathrm{M}, \AA_{\mathrm{n}}=4.5 \mathrm{~V}$
		XM		$\begin{aligned} & 35 \\ & 37 \end{aligned}$	mA	V cc $=\mathrm{Max}$ $\bar{A}_{n}, \bar{B}_{n}, C_{n}=G_{n d}$ $\mathrm{M}, \mathrm{S}_{\mathrm{n}}=4.5 \mathrm{~V}$

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER			UNITS	CONDITIONS
		$C_{L}=15 \mathrm{pF}$			
		Min	Max		
tPLH tPHL	Propagation Delay C_{n} to C_{n+4}		$\begin{aligned} & \hline 27 \\ & 20 \end{aligned}$	ns	$\begin{aligned} & M=\text { Gnd, Figs. 3-1, 3-5 } \\ & \text { Tables I \& II } \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay C_{n} to \bar{F}		$\begin{aligned} & 26 \\ & 20 \\ & \hline \end{aligned}$	ns	$\mathrm{M}=\text { Gnd, Figs. 3-1, 3-5 }$ Table I
tpLH tph	Propagation Delay $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\overline{\mathrm{G}}$		$\begin{aligned} & 29 \\ & 23 \end{aligned}$	ns	$\begin{aligned} & \mathrm{M}, \mathrm{~S}_{1}, \mathrm{~S}_{2}=\text { Gnd; } \mathrm{S}_{1}, \\ & \mathrm{~S}_{3}=4.5 \mathrm{~V} \text {; Figs. } 3-1,3-5 \\ & \text { Table I } \end{aligned}$
tpLH tPHL	Propagation Delay $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\overline{\mathrm{G}}$		$\begin{aligned} & 32 \\ & 26 \end{aligned}$	ns	$\begin{aligned} & \text { M, So, } \mathrm{S}_{3}=\text { Gnd; } \mathrm{S}_{1}, \\ & \mathrm{~S}_{2}=4.5 \mathrm{~V} \text {; Figs. 3-1, 3-4, } \\ & 3-5 ; \text { Table II } \end{aligned}$
tple tph	Propagation Delay \bar{A} or \bar{B} to \bar{P}		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns	$\begin{aligned} & \text { M, S } 1, S_{2}=\text { Gnd; } S_{0}, \\ & S_{3}=4.5 \mathrm{~V} \text {; Figs. 3-1, 3-4; } \\ & \text { Table I } \end{aligned}$
tPLH tphL	Propagation Delay \bar{A} or \bar{B} to \bar{P}		$\begin{aligned} & 30 \\ & 33 \end{aligned}$	ns	$\begin{aligned} & \mathrm{M}, \mathrm{So}_{0}, \mathrm{~S}_{3}=\text { Gnd; } \mathrm{S}_{1}, \\ & \mathrm{~S}_{2}=4.5 \mathrm{~V} ; \text { Figs. } 3-1,3-4 \text {, } \\ & 3-5 ; \text { Table II } \end{aligned}$
tPLH tPHL	Propagation Delay \bar{A}_{i} or \bar{B}_{i} to \bar{F}_{i}		$\begin{aligned} & 32 \\ & 25 \end{aligned}$	ns	$\begin{aligned} & \mathrm{M}_{1} \mathrm{~S}_{1}, \mathrm{~S}_{2}=\text { Gnd; } \mathrm{S}_{0}, \\ & \mathrm{~S}_{3}=4.5 \mathrm{~V} \text {; Figs. 3-1, 3-5: } \\ & \text { Table । } \end{aligned}$
tPLH tPHL	Propagation Delay \bar{A}_{i} or \bar{B}_{i} to \bar{F}_{i}		$\begin{aligned} & 32 \\ & 32 \end{aligned}$	ns	$\begin{aligned} & \mathrm{M}_{1} \mathrm{~S}_{0}, \mathrm{~S}_{3}=\text { Gnd; } \mathrm{S}_{1}, \\ & \mathrm{~S}_{2}=4.5 \mathrm{~V} ; \text { Figs. 3-1, 3-4, } \\ & 3-5 ; \text { Table II } \end{aligned}$
tpLH tphL	Propagation Delay \bar{A} or \bar{B} to \bar{F}		$\begin{aligned} & 33 \\ & 29 \end{aligned}$	ns	$\begin{aligned} & \mathrm{M}=4.5 \mathrm{~V} \text {; Figs. 3-1, 3-5; } \\ & \text { Table III } \end{aligned}$
tple tpHL	Propagation Delay \bar{A} or \bar{B} to C_{n+4}		$\begin{aligned} & 38 \\ & 38 \end{aligned}$	ns	$\begin{aligned} & \mathrm{M}_{1} \mathrm{~S}_{1}, \mathrm{~S}_{2}=\text { Gnd; } \mathrm{S}_{0}, \\ & \mathrm{~S}_{3}=4.5 \mathrm{~V} \text {; Figs. 3-1, 3-4; } \\ & \text { Table । } \end{aligned}$

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Cont'd)

SYMBOL	PARAMETER			UNITS	CONDITIONS
		$C_{L}=15 \mathrm{pF}$			
		Min	Max		
tPLH tphL	Propagation Delay \bar{A} or \bar{B} to $C_{n}+4$		$\begin{aligned} & 41 \\ & 41 \end{aligned}$	ns	$\begin{aligned} & \text { M, So, S3 }=\text { Gnd; } \mathrm{S}_{1}, \\ & \mathrm{~S}_{2}=4.5 \mathrm{~V} ; \text { Figs. 3-1, 3-4, } \\ & \text { 3-5; Table II } \end{aligned}$
tpl tPHL	Propagation Delay \bar{A} or \bar{B} to $A=B$	$\begin{aligned} & 50 \\ & 62 \end{aligned}$		ns	$M, S_{0}, S_{3}=G n d ; S_{1}$ $\mathrm{S}_{2}=4.5 \mathrm{~V}$; $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 5.0 V ; Figs. 3-2, 3-4, 3-5; Table II

SUM MODE TEST TABLE I
FUNCTION INPUTS: $\mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=\mathrm{M}=0 \mathrm{~V}$

SYMBOL	INPUT UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		$\begin{aligned} & \text { APPLY } \\ & 4.5 \mathrm{~V} \end{aligned}$	APPLY GND	$\begin{aligned} & \text { APPLY } \\ & \text { 4.5 } \mathbf{V} \end{aligned}$	APPLY GND	
tPLH tphl	\bar{A}_{i}	\bar{B}_{i}	None	$\begin{aligned} & \text { Remaining } \\ & \bar{A} \text { and } \bar{B} \end{aligned}$	C_{n}	\bar{F}_{i}
$\overline{\text { tPLH }}$ tphi	$\overline{B_{i}}$	\bar{A}_{i}	None	Remaining \bar{A} and \bar{B}	C_{n}	$\overline{F_{i}}$
$\overline{\text { tPLH }}$ tphi	\bar{A}	\bar{B}	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	$\overline{\text { P }}$
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	$\overline{\text { B }}$	\bar{A}	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	$\overline{\mathrm{P}}$
tpLH tphl	\bar{A}	None	\bar{B}	$\operatorname{Remaining~}_{\bar{B}}$	$\begin{aligned} & \text { Remaining } \\ & \bar{A}, C_{n} \end{aligned}$	$\overline{\mathrm{G}}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	\bar{B}	None	\bar{A}	$\text { Remaining }_{\bar{B}}$	$\begin{aligned} & \text { Remaining } \\ & \bar{A}, C_{n} \end{aligned}$	$\overline{\mathrm{G}}$
$\overline{\text { tPLH }}$ tPHL	\bar{A}	None	\bar{B}	$\operatorname{Remaining~}_{\bar{B}}$	$\begin{aligned} & \text { Remaining } \\ & \bar{A}, C_{n} \end{aligned}$	C_{n+4}
$\overline{\text { tPLH }}$ tPHL	\bar{B}	None	\bar{A}	${ }_{\overline{\bar{B}}}^{\text {Remaining }}$	$\begin{aligned} & \text { Remaining } \\ & \overline{\mathrm{A}}, \mathrm{C}_{\mathrm{n}} \end{aligned}$	$\mathrm{C}_{\mathrm{n}+4}$
tple tPHL	C_{n}	None	None	$\frac{A l l}{\bar{A}}$	$\frac{A l l}{\bar{B}}$	$\begin{gathered} \text { Any } \bar{F} \\ \text { or } C_{n}+4 \end{gathered}$

DIFF MODE TEST TABLE II
FUNCTION INPUTS: $\mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=\mathrm{M}=0 \mathrm{~V}$

SYMBOL	INPUT UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		$\begin{aligned} & \text { APPLY } \\ & 4.5 \mathrm{~V} \end{aligned}$	APPLY GND	$\begin{aligned} & \text { APPLY } \\ & 4.5 \mathrm{~V} \end{aligned}$	APPLY GND	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\overline{\text { A }}$	None	\bar{B}	$\frac{\text { Remaining }}{\bar{A}}$	Remaining \bar{B}, C_{n}	\bar{F}_{i}
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	$\overline{\text { B }}$	$\overline{\text { A }}$	None	$\begin{gathered} \text { Remaining } \\ \bar{A} \end{gathered}$	Remaining \bar{B}, C_{n}	\bar{F}_{i}
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\overline{\text { A }}$	None	$\overline{\text { B }}$	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	$\overline{\mathbf{P}}$
tPLH tPHL	$\overline{\text { B }}$	$\overline{\text { A }}$	None	None	Remaining \bar{A} and \bar{B}, C_{n}	\bar{P}
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	\bar{A}	$\overline{\text { B }}$	None	None	Remaining \bar{A} and \bar{B}, C_{n}	$\overline{\mathrm{G}}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\overline{\text { B }}$	None	$\overline{\text { A }}$	None	Remaining \bar{A} and \bar{B}, C_{n}	$\overline{\mathrm{G}}$
tpLH tPHL	$\overline{\text { A }}$	None	\bar{B}	Remaining	$\begin{gathered} \text { Remaining } \\ \bar{B}, C_{n} \end{gathered}$	$\mathrm{A}=\mathrm{B}$
tpLH tPHL	\bar{B}	$\overline{\text { A }}$	None	$\operatorname{Remaining}_{\bar{A}}$	$\begin{gathered} \text { Remaining } \\ \bar{B}, C_{n} \end{gathered}$	$\mathrm{A}=\mathrm{B}$
$\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$	\bar{A}	$\overline{\text { B }}$	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	Cn+4
tpLH	$\overline{\text { B }}$	None	\bar{A}	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	$\mathrm{C}_{\mathrm{n}+4}$
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	C_{n}	None	None	$\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$	None	C_{n+4}

LOGIC MODE TEST TABLE III
FUNCTION INPUTS: $\mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{M}=4.5 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}$

SYMBOL	INPUT UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		$\begin{aligned} & \text { APPLY } \\ & 4.5 \mathrm{~V} \end{aligned}$	APPLY GND	$\begin{aligned} & \text { APPLY } \\ & 4.5 \mathrm{~V} \end{aligned}$	APPLY GND	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\overline{\text { A }}$	\bar{B}	None	None	$\frac{\text { Remaining }}{\overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}}$	Any \bar{F}
tPLH tphL	\bar{B}	\bar{A}	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	Any \bar{F}

