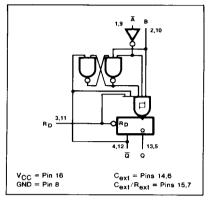
DUAL MONOSTABLE MULTIVIBRATOR

54/74 SERIES "221"

54/74221 54LS/74LS221


DESCRIPTION

The "221" is a Dual Monostable Multivibrator with Schmitt-trigger inputs (B) and an overriding direct Reset (R_D). The output pulse width is independent of the input pulse width and can be varied from 35 nanoseconds to over one minute for the 74LS221. The output pulse width is determined by the value of the external resistance and capacitance connected to the C_{ext} and R_{ext}/C_{ext} terminals.

FEATURES

- Pulse-Width Variance is typically less than \pm 0.5% for 98% of the units
- The "221" demonstrates electrical and switching characteristics that are virtually identical to the "121" oneshots
- Pin-Out is identical to the "123"
- Overriding Reset terminates output
 pulse
- B input has hysteresis for improved noise immunity
- Maximum pulse width:
 54221 21 seconds
 74221 28 seconds
 54LS221 49 seconds
- 74LS221 70 seconds

LOGIC SYMBOL

PIN CONFIGURATION

ORDERING CODE (See Section 9 for further Package and Ordering Information)

PACKAGES	COMMERCIAL RANGES V _{CC} =5V±5%; T _A =0°C to +70°C	MILITARY RANGES V _{CC} =5V±10%; T _A =-55°C to +125°C				
Plastic DIP	N74221N • N74LS221N					
Ceramic DIP	N74221F • N74LS221F	S54221F • S54LS221F				
Flatpak		S54221W • S54LS221W				

Ā1	1	16	Vcc
B1	2	15	Rext/Cext1
R _{D1}	3	14	C _{ext1}
Q1	4	13	Q 1
02	5	12	Q2
Cext2	6	11	RD2
Rext/Cext2	7	10	82
GND	8	9	Ā2

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE^(a)

PINS	DESCRIPTION		54/74	54S/74S	54LS/74LS
Ā	Trigger (active LOW) input	Ι _{ΙΗ} (μΑ) Ι _{ΙΙ} (mA)	40 -1.6		20 -0.4
В	Trigger (active HIGH) input	liΗ (μΑ) liΓ (mA)	80 3.2		20 -0.8
₽ R _D	Direct Reset (active LOW) input	Ι _{ΙΗ} (μΑ) Ι _{ΙΕ} (mA)	80 -3.2		20 -0.8
Q	Pulse (active HIGH) output	Ι _{ΟΗ} (μΑ) Ι _{ΟL} (mA)	-800 16		-400 4/8(a)
Q	Pulse (active LOW) output	Ι _{ΟΗ} (μΑ) Ι _{ΟL} (mA)	-800 16		-400 4/8(a)

NOTE

a. The slashed numbers indicate different parametric values for Military/Commercial

temperature ranges respectively.

370

signetics

This Material Copyrighted By Its Respective Manufacturer

54/74 SERIES "221"

DUAL MONOSTABLE MULTIVIBRATOR

FUNCTIONAL DESCRIPTION

The "221" is a dual monostable multivibrator with performance characteristics virtually identical to those of the "121". Each multivibrator features an active LOW going edge input (\overline{A}) and an active HIGH going edge input (\overline{B}) either of which can be used as an enable input.

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitttrigger input circuitry (TTL hysteresis) for the B input allows jitter free triggering from inputs with transition rates as slow as 1 volt/second, providing the circuit with excellent noise immunity of typically 1.2 volts. A high immunity to V_{CC} noise of typically 1.5 volts is also provided by internal latching circuitry.

Once fired, the outputs are independent of further transitions of the \overline{A} and B inputs and

are a function of the timing components. The output pulses can be terminated by the overriding active LOW Reset(\overline{R}_D). Input pulses may be of any duration relative to the output pulse. Output pulse length may be varied from 35 nanoseconds to the maximums shown in the FEATURES by choosing appropriate timing components. With $R_{\text{ext}} = 2k\Omega$ and $C_{\text{ext}} = 0$, an output pulse of typically 30 nanoseconds is achieved which may be used as a dc triggered reset signal. Output rise and fall times are TTL compatible and independent of pulse length.

Pulse width stability is achieved through internal compensation and is virtually independent of V_{CC} and temperature. In most applications, pulse stability will only be limited by the accuracy of external timing components.

Jitter free operation is maintained over the full temperature and $V_{\mbox{CC}}$ ranges for more

OUTPUT PULSE WIDTH vs TIMING RESISTOR VALUE 10ms c 1ms tw(out)-Output Pulse Width 100µs Ce 10µs Cal 1µs OOP 100ns VCC = 5V T_A = 25°C 10ns 2 7 10 20 40 70 100 1 4 Rext—Timing Resistor Value—kΩ

Figure A

signetics

This Material Copyrighted By Its Respective Manufacturer

 $t_W(out) = C_{ext}R_{ext}ln2$ $t_W(out) \simeq 0.7C_{ext}R_{ext}$

In circuits where pulse cutoff is not critical, timing capacitance up to 1000μ F and timing resistance as low as $1.4k\Omega$ may be used.

than six decades of timing capacitance

(10pF to 10μ F) and more than one decade

of timing resistance $(2k\Omega \text{ to } 30k\Omega \text{ for the}$

54221, $2k\Omega$ to $40k\Omega$ for the 74221, $2k\Omega$ to

70k Ω for the 54LS221, and 2k Ω to 100k Ω for

the 74LS221). Throughout these ranges,

pulse width is defined by the following rela-

tionship: (See Figure A)

Pin assignments for these devices are identical to those of the "123" so that the "221" can be substituted for those products in systems not using the retrigger by merely changing the value of R_{ext} and/or C_{ext} .

DUAL MONOSTABLE MULTIVIBRATOR

54/74 SERIES "221"

54/74 54S/74S 54LS/74LS PARAMETER TEST CONDITIONS UNIT Max Min Max Min Max Min 50 11 mΑ Quiescent ICC Supply current V_{CC} = Max Triggered 80 27 mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE^(b)

AC CHARACTERISTICS: TA=25°C (See Section 4 for Test Circuits and Conditions)

			54/74		54S/74S		54LS/74LS		
	PARAMETER	TEST CONDITIONS	C _L = 15pF R _L = 400Ω				$C_L = 15pF$ $R_L = 2k\Omega$		
			Min	Max	Min	Max	Min	Max	1
tPLH tPHL	Propagation delay A input to Q & Q output	Figure 1 C _{ext} =80pF, R _{ext} =2kΩ		70 80				70 80	ns ns
^t PLH t _{PHL}	Propagation delay B input to Q & Q output	Figure 2 C _{ext} =80pF, R _{ext} =2kΩ		55 65				55 65	ns ns
^t PLH ^t PHL	Propagation delay R _D input to Q & Q output	Figure 3 C _{ext} =80pF, R _{ext} =2kΩ		40 27				40 27	ns ns
tw	Minimum output pulse width	$C_{ext} = 0pF, R_{ext} = 2k\Omega$	20	50			20	70	ns
tw	Output pulse width	C _{ext} =80pF, R _{ext} =2kΩ	70	150			70	150	ns
		$C_{ext} = 100 \rho F, R_{ext} = 10 k \Omega$	650	750			600	750	ns
		$C_{ext} = 1\mu F, R_{ext} = 10k\Omega$	6.5	7.5			6.0	7.5	ns

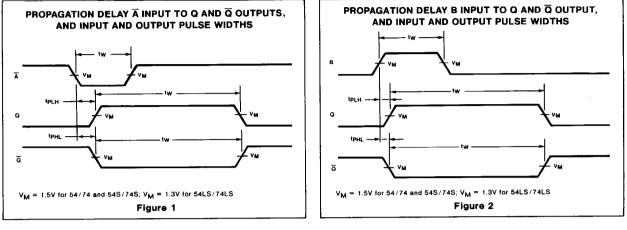
AC SETUP REQUIREMENTS: T_A = 25°C (See Section 4 for Test Circuits and Conditions)

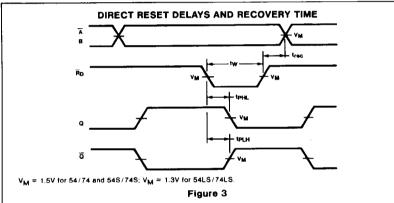
				54/74		54S/74S		54LS/74LS		
	PARAMETER		TEST CONDITIONS		Max	Min	Max	Min	Max	UNIT
tw	Minimum input pulse width to trigger	Figures 1 & 2		50				50		ns
tw	Minimum Reset pulse width	Figure 3		20				40		ns
^t rec	Recovery time from Reset to trigger input	Figure 3		15				15		ns
_			Mil	1.4	30			1.4	70	kΩ
Rext	External timing resistor range		Com	1.4	40			1.4	100	kΩ
C _{ext}	External timing capacitance range			0	1000			o	1000	μF
	Output duty cycle	Rext	= 2kΩ		67				67	%
		R _{ext} = R	l _{ext} (Max)		90				90	%

NOTE

b. For family dc characteristics, see inside front cover for 54/74 and 54H/74H, and see inside back cover for 54S/74S and 54LS/74LS specifications.

372


signetics


This Material Copyrighted By Its Respective Manufacturer

DUAL MONOSTABLE MULTIVIBRATOR

54/74 SERIES "221"

AC WAVEFORMS

signetics