

INPUT LOADING/FAN-OUT: See Section 3 for U.L. defintions

PIN NAMES	DESCRIPTION	54/74S (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW
S	Common Data Select Input	2.5/2.5	1.0/0.5
$\overline{O E}$	3-State Output Enable Input (Active LOW)	1.25/1.25	0.5/0.25
loa - lod	Data Inputs from Source 0	1.25/1.25	0.5/0.25
$\frac{l_{1 a}}{z}-l_{10}{ }^{\text {d }}$	Data Inputs from Source 1	1.25/1.25	0.5/0.25
$\overline{\mathbf{Z}}_{\mathrm{a}}-\overline{\mathbf{Z}}_{\mathrm{d}}$	Inverting Data Outputs	162/12.5	$\begin{array}{r} 65 / 15 \\ (25) /(75) \end{array}$

FUNCTIONAL DESCRIPTION - This device is a quad 2-input multiplexer with 3-state outputs. It selects four bits of data from two sources under control of a common Select input (S). When the Select input is LOW, the lox inputs are selected and when Select is HIGH , the $l_{1 x}$ inputs are selected. The data on the selected inputs appears at the outputs in inverted form. The '258 is the logic implementation of a 4 -pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$
\begin{array}{ll}
\bar{Z}_{a}=\overline{O E} \bullet\left(l_{1 a} \bullet S+l_{0 a} \bullet \bar{S}\right) & \bar{Z}_{b}=\overline{O E} \bullet\left(l_{1 b} \bullet S+l_{0 b} \bullet \bar{S}\right) \\
\bar{Z}_{c}=\overline{O E} \bullet\left(l_{1 c} \bullet S+l_{0 c} \bullet \bar{S}\right) & \bar{Z}_{d}=\overline{O E} \bullet\left(l_{1 d} \bullet S+l_{0 d} \bullet \bar{S}\right)
\end{array}
$$

When the Output Enable input $(\overline{\mathrm{OE}})$ is HIGH , the outputs are forced to a high impedance OFF state. If the outputs of the 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3state devices whose outputs are tied together are designed so there is no overlap.

TRUTH TABLE

OUTPUT ENABLE	SELECT INPUT	DATA INPUTS		OUTPUTS
$\overline{\mathrm{OE}}$	S	l_{0}	l_{1}	$\overline{\mathrm{Z}}$
H	X	X	X	Z
L	H	X	L	H
L	H	X	H	L
L	L	L	X	H
L	L	H	X	L

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

LOGIC DIAGRAM

SYMBOL	PARAMETER		54/74S		54/74LS		UNITS	CONDITIONS
			Min	Max	Min	Max		
los	Output Short Circuit Current		-40	-100	-20	-100	mA	$\mathrm{Vcc}=$ Max
Icc	Power Supply Current	Outputs HIGH	568187		7.0		mA	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\text { Max; } \mathrm{S}, \mathrm{I}_{1 \mathrm{x}}=4.5 \mathrm{~V} \\ & \mathrm{OE}, \mathrm{I}_{\mathrm{Ox}}=\mathrm{Gnd} \end{aligned}$
		Outputs LOW				14		$\begin{aligned} & \mathrm{VCC}=M a x ; I_{1 x}=4.5 \mathrm{~V} \\ & \mathrm{OE}, I_{0 x}, \mathrm{~S}=\mathrm{Gnd} \end{aligned}$
		Outputs OFF		87		19		$\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=\mathrm{Max} ; \mathrm{S}, \mathrm{I}_{\mathrm{x}}=\mathrm{Gnd} \\ & \mathrm{OE}=\mathrm{I}_{1 \mathrm{x}}=4.5 \mathrm{~V} \end{aligned}$

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER	54/74S	54/74LS	UNITS	CONDITIONS
		$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$	$C_{L}=15 \mathrm{pF}$		
		Min Max	Min Max		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay I_{n} to \bar{Z}_{n}	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	ns	Figs. 3-1, 3-4
tpLH tPHL	Propagation Delay S to $\overline{\mathrm{Z}}_{\mathrm{n}}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	ns	Figs. 3-1, 3-4
$\begin{aligned} & \text { tpZH } \\ & \text { tpzl } \end{aligned}$	Output Enable Time	$\begin{array}{r} 19.5 \\ 21 \end{array}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns	$\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega \text { ('LS258) } \end{aligned}$
tPHZ tplz	Output Disable Time	8.5 14	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	ns	$\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$ ('LS258)

