54LS/74LS295A 4-BIT SHIFT REGISTER
 (With 3-State Outputs)

DESCRIPTION - The '295A is a 4-bit shift register with serial and parallel synchronous operating modes, and independent 3-state output buffers. The Parallel Enable input (PE) controls the shift-right or parallel load operation. All data transfers and shifting occur synchronous with the HIGH-to-LOW clock transition.

The 3-state output buffers are controlled by an active HIGH Output Enable input (OE. Disabling the output buffers does not affect the shifting or loading of input data, but it does inhibit serial expansion. The device is fabricated with the Schottky barrier diode process for high speed.

- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS
- NEGATIVE EDGE-TRIGGERED CLOCK INPUT
- PARALLEL ENABLE MODE CONTROL INPUT
- 3-STATE BUSSABLE OUTPUT BUFFERS

ORDERING CODE: See Section 9

PKGS	$\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$	COMMERCIAL GRADE	MILITARY GRADE	PKG TYPE
		$\begin{aligned} & \mathrm{Vcc}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	
Plastic DIP (P)	A	74LS295APC		9A
Ceramic DIP (D)	A	74LS295ADC	54LS295ADM	6A
Flatpak (F)	A	74LS295AFC	54LS295AFM	31

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 14$ GND $=\operatorname{Pin} 7$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74LS (U.L.) HIGH/LOW
PE	Parallel Enable Input (Active HIGH)	$0.5 / 0.25$
DS	Serial Data Input	$0.5 / 0.25$
P0- P_{3}	Parallel Data Inputs	$0.5 / 0.25$
OE	3-State Output Enable Input (Active HIGH)	0.50 .25
CP	Clock Pulse Input (Active Falling Edge)	$0.5 / 0.25$
$\mathrm{O}_{0}-\mathrm{O}_{3}$	3-State Outputs	$65 / 5.0$
		$(25) /(2.5)$

FUNCTIONAL DESCRIPTION - This device is a 4-bit shift register with serial and parallel synchronous operating modes. It has a Serial Data (Dss_{s}) and four Parallel Data ($\mathrm{P}_{0}-P_{3}$) inputs and four parallel 3-State output buffers $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$. When the Parallel Enable (PE input is HIGH, data is transferred from the Parallel Data inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) into the register synchronous with the HIGH-to-LOW transition of the Clock ($\overline{\mathrm{CP}}$). When the PE is LOW, a HIGH-to-LOW transition on the clock transfers the serial data on the Ds input to register Q_{0}, and shifts data from Q_{0} to Q_{1}, Q_{1} to Q_{2} and Q_{2} to Q_{3}. The input data and parallel enable are fully edged-triggered and must be stable only one setup time before the HIGH-to-LOW clock transition.

The 3-state output buffers are controlled by an active HIGH Output Enable input (OE). When the OE is HIGH, the four register outputs appear at the $\mathrm{O}_{0}-\mathrm{O}_{3}$ outputs. When OE is LOW, the outputs are forced to a high impedance OFF state. The 3 -state output buffers are completely independent of the register operation, i.e., the input transitions on the OE input do not affect the serial or parallel data transfers of the register. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3 -state devices whose outputs are tied together are designed so there is no overlap.

MODE SELECT TABLE

OPERATING MODE	INPUTS				OUTPUTS			
	PE	$\overline{\mathrm{CP}}$	Ds	Pn_{n}	Qo	Q1	Q2	Q3
Shift Right	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\stackrel{-L}{L}$	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { qo } \\ & \text { qo } \end{aligned}$	$\begin{aligned} & \mathbf{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \text { q2 } \end{aligned}$
Parallel Load	h	-	X	p_{n}	po	p_{1}	P2	p3

- The indicated data appears at the Q outputs when OE is HIGH. When OE is LOW, the indicated data is loaded into the register, but the outputs are all foreced to the high impedance OFF state.
$p_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH-to-LOW clock transition.
I = LOW Voltage Level one set-up time prior to the HIGH-to-LOW clock transition
$h=$ HIGH Voltage Level one set-up time prior to the HIGH-to-LOW clock transition.
$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

LOGIC DIAGRAM

	PARAMETER		54/74LS		UNITS	CONDITIONS
			Min	Max		
los	Output Short Circuit Curent		-20	-100	mA	$\mathrm{Vcc}=\mathrm{Max}$
Icc	Power Supply Current	$\begin{array}{\|c} \text { Outputs ON } \\ \hline \text { Outputs OFF } \end{array}$	$\begin{aligned} & 23 \\ & 25 \end{aligned}$		mA	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max}, \mathrm{P}_{\mathrm{n}}=\mathrm{Gnd} \\ & \mathrm{PE}, \mathrm{DS}_{\mathrm{s}, \mathrm{OE}=4.5 \mathrm{~V}}^{\mathrm{CP}=} \\ & \hline \mathrm{VCC}=\mathrm{Max}, \mathrm{PE}, \mathrm{Ds}=4.5 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{n}}, \mathrm{OE}, \mathrm{CP}=\mathrm{Gnd} \end{aligned}$
AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)						
SYMBOL	PARAMETER				UNITS	CONDITIONS
			$C_{L}=15 \mathrm{pF}$			
			Min	Max		
${ }^{\text {max }}$	Maximum Shif	requency	30		MHz	Figs. 3-1, 3-9
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\begin{aligned} & \text { Propagation } \mathrm{D} \\ & \overline{\mathrm{CP}} \text { to } \mathrm{Q}_{\mathrm{n}} \end{aligned}$			$\begin{aligned} & 30 \\ & 26 \\ & \hline \end{aligned}$	ns	Figs. 3-1, 3-9
tpzh	Output Enable			$\begin{aligned} & 18 \\ & 20 \end{aligned}$	ns	$\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega \text {, } \end{aligned}$
$\begin{aligned} & \text { tphz } \\ & \text { tpLz } \\ & \hline \end{aligned}$	Output Disable	ime		$\begin{aligned} & 24 \\ & 20 \end{aligned}$	ns	$\begin{aligned} & \text { Figs. } 3-3,3-11,3-12 \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	54/74LS		UNITS	CONDITIONS
		Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW Ds, P_{n} to $\overline{C P}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$		ns	Fig. 3-7
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$	Hold Time HIGH or LOW D_{s}, P_{n} to $\overline{C P}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	$\begin{aligned} & \text { Setup Time HIGH or LOW } \\ & \text { PE to } \overline{C P} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$		ns	Fig. 3-7
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$	Hold Time HIGH or LOW PE to $\overline{C P}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	
tw (L)	$\overline{\mathrm{CP}}$ Pulse Width LOW	20		ns	Fig. 3-9

