
INTEGRATED CIRCUITS

Product specification Supersedes data of 1996 Nov 07 IC24 Data Handbook

1998 Apr 20

PHILIPS

74LV74

FEATURES

- Wide operating voltage: 1.0 to 5.5V
- Optimized for Low Voltage applications: 1.0 to 3.6V
- Accepts TTL input levels between V_{CC} = 2.7V and V_{CC} = 3.6V
- Typical V_{OLP} (output ground bounce) < 0.8V @ V_{CC} = 3.3V, $T_{amb} = 25^{\circ}C$
- Typical V_{OHV} (output V_{OH} undershoot) > 2V @ V_{CC} = 3.3V, $T_{amb} = 25^{\circ}C$
- Output capability: standard
- I_{CC} category: flip-flops

QUICK REFERENCE DATA

GND = 0V: $T_{amb} = 25^{\circ}C$: $t_r = t_f \le 2.5$ ns

DESCRIPTION

The 74LV74 is a low-voltage Si-gate CMOS device and is pin and function compatible with 74HC/HCT74.

The 74LV74 is a dual positive edge triggered, D-type flip-flop with individual data (D) inputs, clock (CP) inputs, set (\overline{S}_D) and (\overline{R}_D) inputs; also complementary Q and \overline{Q} outputs.

The set and reset are asynchronous active LOW inputs and operate independently of the clock input. Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition, for predictable operation.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay nCP to nQ, nQ nS _D to nQ, nQ nR _D to nQ, nQ	$C_{L} = 15pF$ $V_{CC} = 3.3V$	11 14 14	ns
f _{max}	Maximum clock frequency	$C_{L} = 15pF$ $V_{CC} = 3.3V$	76	MHz
Cl	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per flip-flop	Notes 1 and 2	24	pF

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW) $\begin{array}{l} \mathsf{P}_{D} = \mathsf{C}_{PD} \times \mathsf{V}_{CC}{}^2 \times \mathsf{f}_i + \Sigma \left(\mathsf{C}_L \times \mathsf{V}_{CC}{}^2 \times \mathsf{f}_o\right) \text{ where:} \\ \mathsf{f}_i = \mathsf{input} \text{ frequency in MHz; } \mathsf{C}_L = \mathsf{output} \text{ load capacitance in pF;} \\ \mathsf{f}_o = \mathsf{output} \text{ frequency in MHz; } \mathsf{V}_{CC} = \mathsf{supply voltage in V;} \\ \Sigma \left(\mathsf{C}_L \times \mathsf{V}_{CC}{}^2 \times \mathsf{f}_o\right) = \mathsf{sum of the outputs.} \end{array}$

2. The condition is $V_I = GND$ to V_{CC}

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
14-Pin Plastic DIL	-40°C to +125°C	74LV74 N	74LV74 N	SOT27-1
14-Pin Plastic SO	-40°C to +125°C	74LV74 D	74LV74 D	SOT108-1
14-Pin Plastic SSOP Type II	-40°C to +125°C	74LV74 DB	74LV74 DB	SOT337-1
14-Pin Plastic TSSOP Type I	-40°C to +125°C	74LV74 PW	74LV74PW DH	SOT402-1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1, 13	$1\overline{R}_{D,}2\overline{R}_{D}$	Asynchronous reset-direct input (active-LOW)
2, 12	1D, 2D	Data inputs
3, 11	1CP, 2CP	Clock input (LOW-to-HIGH), edge-triggered)
4, 10	$1\overline{S}_{D,} 2\overline{S}_{D}$	Asynchronous set-direct input (active-LOW)
5, 9	1Q, 2Q	True flip-flop outputs
6, 8	1 <u>Q</u> , 2 <u>Q</u>	Complement flip-flop outputs
7	GND	Ground (0V)
14	V _{CC}	Positive supply voltage

FUNCTION TABLE

	INPU	TS		OUT	PUTS
S _D	R _D	СР	D	Q	Q
L H L	H L L	X X X	X X X	H L H	L H H
		OUT	PUTS		
	INPU	13		0011	•.•
<u> </u>		CP	D	Q _{n+1}	Q _{n+1}

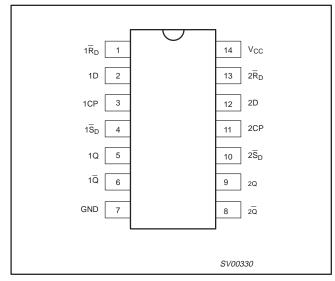
Н = HIGH voltage level L

LOW voltage level =

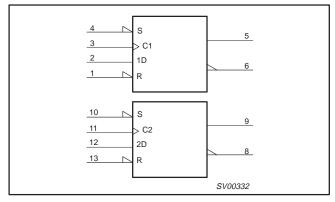
= don't care

= LOW-to-HIGH CP transition

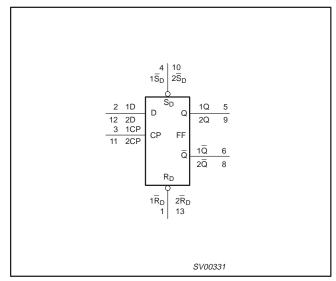
 Q_{n+1} = state after the next LOW-to-HIGH CP transition

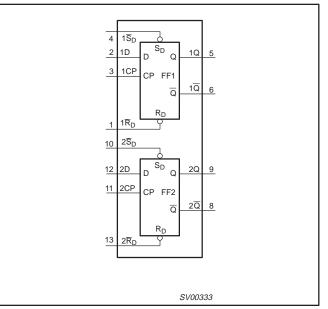

Х

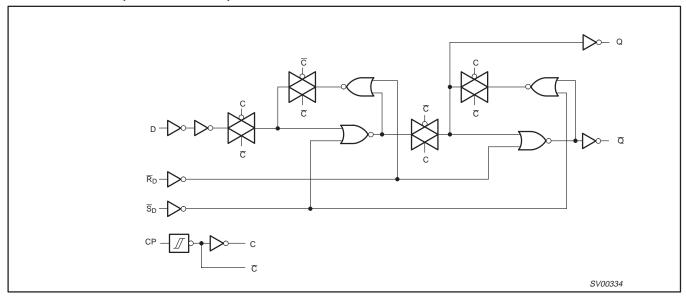
î


Product specification

74LV74


PIN CONFIGURATION


LOGIC SYMBOL (IEEE/IEC)


LOGIC SYMBOL

FUNCTIONAL DIAGRAM

LOGIC DIAGRAM (ONE FLIP-FLOP)

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT
V _{CC}	DC supply voltage	See Note1	1.0	3.3	5.5	V
VI	Input voltage		0	-	V _{CC}	V
Vo	Output voltage		0	-	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times except for Schmitt-trigger inputs	$\begin{array}{c} V_{CC} = 1.0V \text{ to } 2.0V \\ V_{CC} = 2.0V \text{ to } 2.7V \\ V_{CC} = 2.7V \text{ to } 3.6V \\ V_{CC} = 3.6V \text{ to } 5.5V \end{array}$	- - -	- - - -	500 200 100 50	ns/V

NOTE:

1. The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V.

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134)

Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
±I _{IK}	DC input diode current	$V_{\rm I} < -0.5 \text{ or } V_{\rm I} > V_{\rm CC} + 0.5 V$	20	mA
±І _{ОК}	DC output diode current	$V_{\rm O}$ < -0.5 or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5V	50	mA
±ΙΟ	DC output source or sink current – standard outputs	$-0.5V < V_{O} < V_{CC} + 0.5V$	25	mA
±I _{GND} , ±I _{CC}	DC V _{CC} or GND current for types with –standard outputs		50	mA
T _{stg}	Storage temperature range		-65 to +150	°C
	Power dissipation per package	for temperature range: -40 to +125°C		
P _{tot}	-plastic DIL	above +70°C derate linearly with 12mW/K	750	mW
' tot	–plastic mini-pack (SO)	above +70°C derate linearly with 8 mW/K	500	11100
	-plastic shrink mini-pack (SSOP and TSSOP)	above +60°C derate linearly with 5.5 mW/K	400	

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74LV74

DC CHARACTERISTICS

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	-40)°C to +8	5°C	-40°C to	o +125°C	
			MIN	TYP ¹	MAX	MIN	MAX	
		$V_{CC} = 1.2V$	0.9			0.9		
VIH	HIGH level Input	$V_{CC} = 2.0V$	1.4			1.4		
ЧН	voltage	V _{CC} = 2.7 to 3.6V	2.0			2.0] ľ
		V _{CC} = 4.5 to 5.5V	0.7*V _{CC}			0.7*V _{CC}		
		$V_{CC} = 1.2V$			0.3		0.3	
VIL	LOW level Input	$V_{CC} = 2.0V$			0.6		0.6	V
۰IL	voltage	V _{CC} = 2.7 to 3.6V			0.8		0.8	l .
		V _{CC} = 4.5 to 5.5			0.3*V _{CC}		0.3*V _{CC}	
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$		1.2				
	HIGH level output	V_{CC} = 2.0V; V_I = V_{IH} or $V_{IL;}$ – I_O = 100 μ A	1.8	2.0		1.8		
V _{OH}	voltage; all outputs	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	2.5	2.7		2.5		V
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	2.8	3.0		2.8		
		$V_{CC} = 4.5 \text{V}; \text{V}_{\text{I}} = \text{V}_{\text{IH}} \text{ or } \text{V}_{\text{IL};} - \text{I}_{\text{O}} = 100 \mu \text{A}$	4.3	4.5		4.3		
V _{OH}	HIGH level output voltage;	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 6mA$	2.40	2.82		2.20		
- 011	STANDARD outputs	$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 12mA$	3.60	4.20		3.50		
		V_{CC} = 1.2V; V_I = V_{IH} or $V_{IL;} I_O$ = 100 μ A		0				
	LOW level output	V_{CC} = 2.0V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2	
V _{OL}	voltage; all outputs	$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 100\mu A$		0	0.2		0.2	V
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0	0.2		0.2	
		$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0	0.2		0.2	
V _{OL}	LOW level output voltage;	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 6mA$		0.25	0.40		0.50	
VOL	STANDARD outputs	V_{CC} = 4.5V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 12mA		0.35	0.55		0.65	
I _I	Input leakage current	$V_{CC} = 5.5V; V_I = V_{CC} \text{ or } GND$			1.0		1.0	μA
I _{CC}	Quiescent supply current; flip-flops	$V_{CC} = 5.5V; V_I = V_{CC} \text{ or GND}; I_O = 0$			20.0		80	μA
ΔI_{CC}	Additional quiescent supply current per input	$V_{CC} = 2.7V$ to 3.6V; $V_{I} = V_{CC} - 0.6V$			500		850	μA

NOTE:

1. All typical values are measured at $T_{amb} = 25^{\circ}C$.

Product specification

AC CHARACTERISTICS

GND = 0V; t_r = t_f \le 2.5ns; C_L = 50pF; R_L = 1K Ω

SYMBOL	PARAMETER	WAVEFORM	CONDITION		LIMITS 40 to +85 °	°C		1ITS +125 °C	UNIT
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	-
			1.2	-	70	-	-	-	
			2.0	-	24	44	- 1	56	
t _{PHL} /t _{PLH}	Propagation delay nCP to nQ, nQ	Figures, 1, 3	2.7	-	18	28	-	41	ns
			3.0 to 3.6	-	13 ²	26	-	33	
			4.5 to 5.5	-	9.5 ³	17	-	23	
			1.2	-	90	-	-	-	
			2.0	-	31	46	-	58	
t _{PHL} /t _{PLH}	Propagation delay nS _D to nQ, nQ	Figures 2, 3	2.7	-	23	34	-	43	ns
	100 10 110, 110		3.0 to 3.6	-	17 ²	27	-	34	
		4.5 to 5.5	-	12 ³	19	-	24		
			1.2	-	90	-	-	-	
			2.0	-	31	46	-	58	
t _{PHL} /t _{PLH}	Propagation delay $n\overline{R}_{D}$ to nQ, nQ	Figures 2, 3	2.7	-	23	34	-	43	ns
	IIKD IO IIQ, IIQ		3.0 to 3.6	-	17 ²	27	- 1	34	
			4.5 to 5.5	-	12 ³	19	- 1	24	
			2.0	34	10	-	41	-	
	Clock pulse width		2.7	25	8	-	30	-	ns
tw	tw HIGH to LOW	Figure 1	3.0 to 3.6	20	7 ²	- 1	24	-	
			4.5 to 5.5	15	6 ³	-	18	-	
		2.0	34	10	-	41	-		
	Set or reset pulse		2.7	25	8	-	30	-	
t _W	width LOW	Figure 2	3.0 to 3.6	20	72	-	24	-	ns
			4.5 to 5.5	15	6 ³	-	18	-	
			1.2		5	-	_	-	
			2.0	14	2	-	15	_	ns
t _{rem}	Removal time	Figure 2	2.7	10	1	- 1	11	-	
rem	set or reset		3.0 to 3.6	8	1 ²	-	9	_	
			4.5 to 5.5	6	1 ³	-	7	_	
			1.2	_	10	-		-	
			2.0	22	4	-	26	-	
t _{su}	Set-up time	Figure 1	2.7	12	3	-	15	-	ns
۳su	nD to nCP		3.0 to 3.6	8	2 ²	-	10	-	113
			4.5 to 5.5	6	1 ²	-	8	-	
		+	1.2		-10	-	-	-	
			2.0	3	-2	-	3	_	
t .	Hold time	Figure 1	2.7	3	-2	-		3 – ns	
t _h	nD to nCP		3.0 to 3.6	3	-2 ²	_	3	_	115
			4.5 to 5.5	3	-2- -2 ³	-	3	-	
		+	2.0	14	40	-	12	-	
	.		2.0	50	40 90	-	40	-	
f _{max}	Maximum clock pulse frequency	Figure 1			90 100 ²		40		MHz
			3.0 to 3.6	60		-		-	
			4.5 to 5.5	70	110 ³	-	56	-	

NOTE:

1. Unless otherwise stated, all typical values are at $T_{amb} = 25^{\circ}C$.

2. Typical value measured at V_{CC} = 3.3V.

3. Typical value measured at V_{CC} = 5.0V.

74LV74

AC WAVEFORMS

 V_M = 1.5V at V_{CC} \geq 2.7V \leq 3.6V V_{M} = 0.5 * V_{CC} at V_{CC} < 2.7V and \geq 4.5V V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

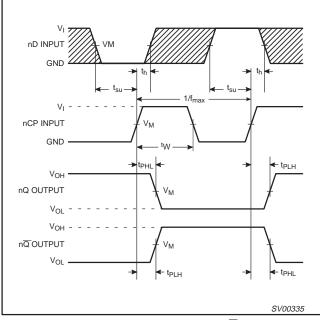
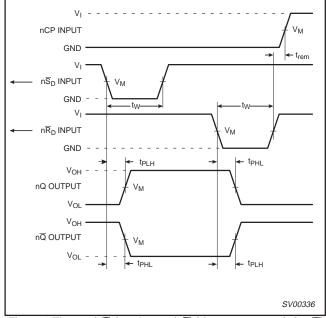
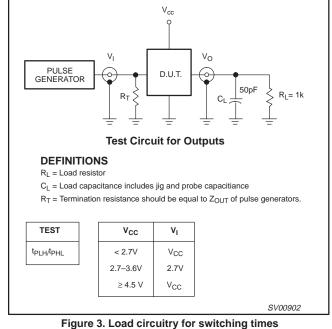
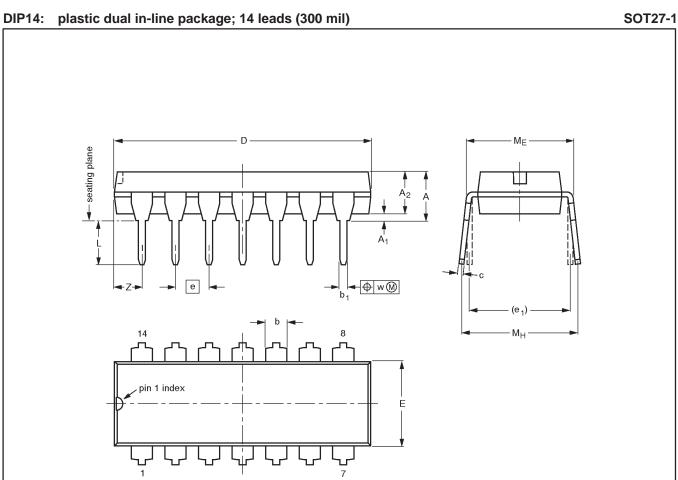


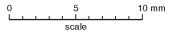
Figure 1.The clock (nCP) to output (nQ, $n\overline{Q}$) propagation delays, the clock pulse width, the nD to nCP setup times, the nCP to nD hold times, the output transition times and the maximum clock pulse frequency

NOTE:

The shaded areas indicate when the input is permitted to change for predictable output performance.


Figure 2. The set $(n\overline{S}_D)$ and reset $(n\overline{R}_D)$ input to output $(nQ, n\overline{Q})$ propagation delays, the set and reset pulse widths and the $n\overline{R}_{D}$ to nCP removal time

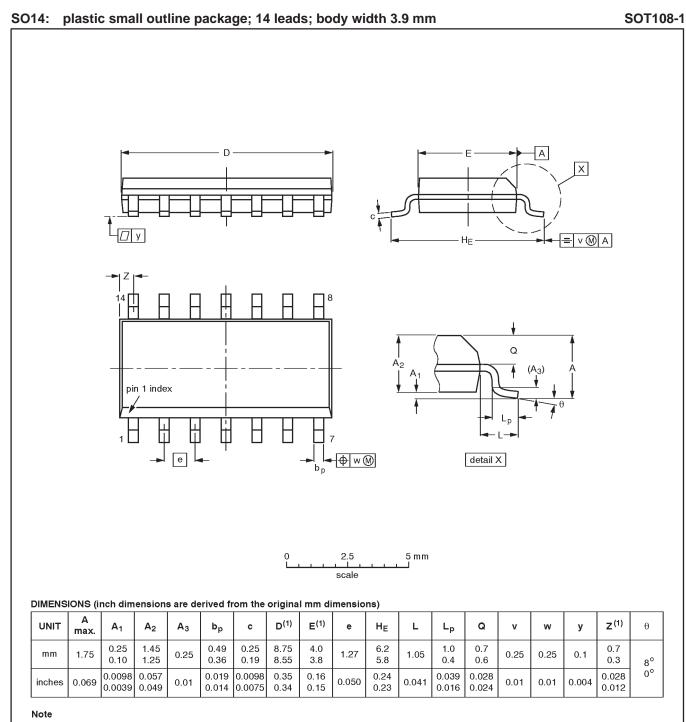

TEST CIRCUIT

74LV74

Product specification

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	c	D ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	M _E	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

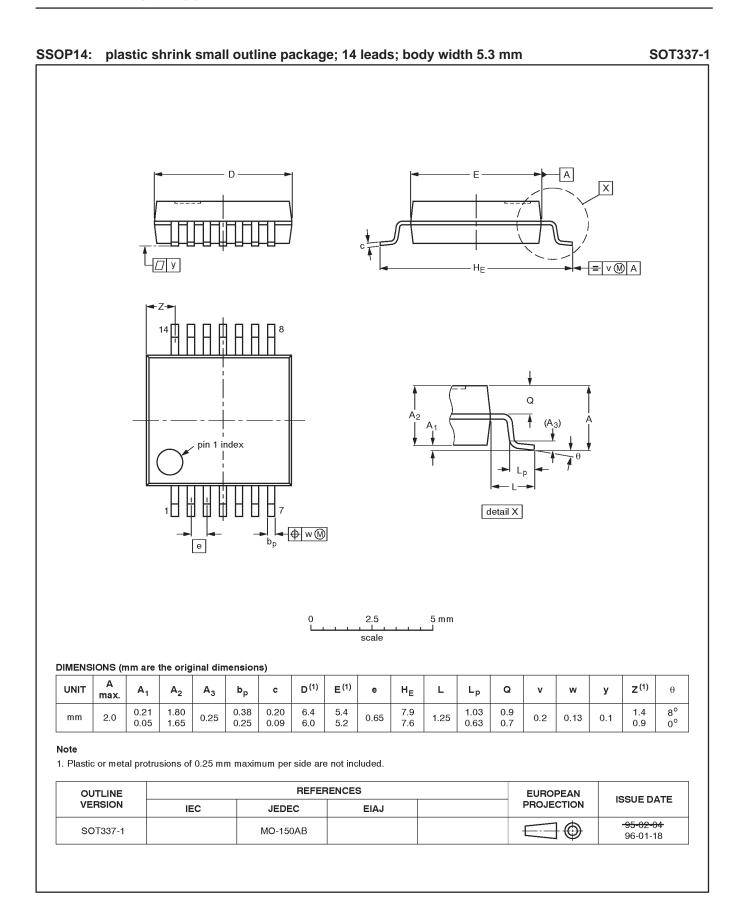

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT27-1	050G04	MO-001AA			-92-11-17 95-03-11	

Product specification

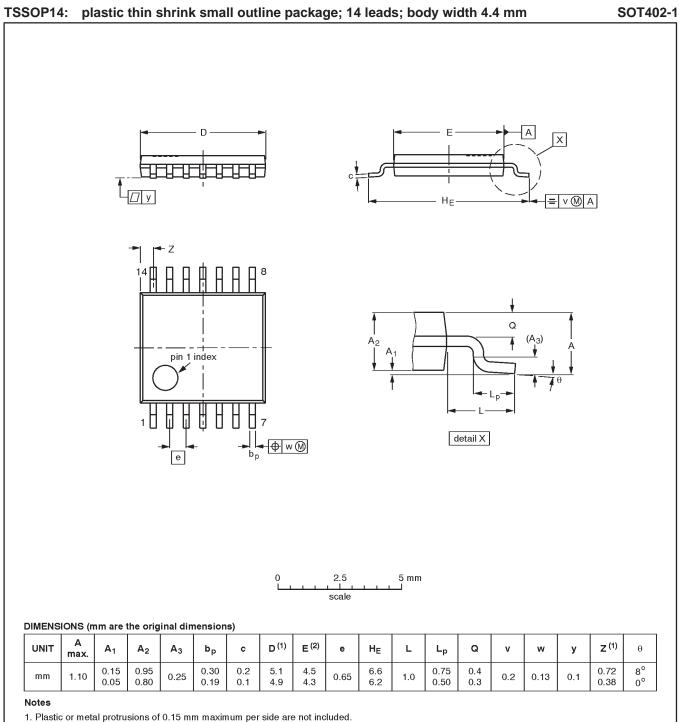
74LV74



1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	REFERENCES EUROPEAN				
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT108-1	076E06S	MS-012AB				91-08-13 95-01-23	

74LV74


Product specification

Product specification

Dual D-type flip-flop with set and reset; positive edge-trigger

74LV74

Plastic of metal protrusions of 0.15 mm maximum per side are not included.
Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT402-1		MO-153			-94-07-12 95-04-04	

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96 9397-750-04414

Let's make things better.

PHILIPS