74LVQ138

Low Voltage 1-of-8 Decoder/Demultiplexer

General Description

The LVQ138 is a high-speed 1-of-8 decoder/demultiplexer. This device is ideally suited for high-speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1-of-24 decoder using just three LVQ138 devices or a 1-of-32 decoder using four LVQ138 devices and one inverter.

Features

- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Improved latch-up immunity
- Guaranteed incident wave switching into 75Ω
- 4 kV minimum ESD immunity
- Demultiplexing capability
- Multiple input enable for each expansion
- Active LOW mutually exclusive outputs
- MIL-STD-883 54AC products are available for Military/ Aerospace applications

Ordering Code: See Section 11

Logic Symbols

Connection Diagram

Pin Assignment for SOIC JEDEC and EIAJ

Pin Names	Description
$A_{0}-A_{2}$	Address Inputs
$\bar{E}_{1}-\bar{E}_{2}$	Enable Inputs
E_{3}	Enable Input
$\overline{\mathrm{O}}_{0}-\bar{O}_{7}$	Outputs

	SOIC JEDEC	SOIC EIAJ
Order Number	74LVQ138SC	74LVQ138SJ
	74LVQ138SCX	74LVQ138SJX
See NS Package Number	M16A	M16D

Functional Description

The LVQ138 high-speed 1-of-8 decoder/demultiplexer accepts three binary weighted inputs (A_{0}, A_{1}, A_{2}) and, when enabled, provides eight mutually exclusive active-LOW outputs $\left(\overline{\mathrm{O}}_{0}-\mathrm{O}_{7}\right)$. The LVQ138 features three Enable inputs, two active-LOW ($\mathrm{E}_{1}, \mathrm{E}_{2}$) and one active-HIGH (E_{3}). All outputs will be HIGH unless \bar{E}_{1} and \bar{E}_{2} are LOW and E_{3} is HIGH. This multiple enable function allows easy parallel ex-
pansion of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four LVQ138 devices and one inverter (see Figure 1). The LVQ138 can be used as an 8-output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active-HIGH or active-LOW state.

Truth Table

Inputs						Outputs							
\bar{E}_{1}	\bar{E}_{2}	E_{3}	A_{0}	A_{1}	A_{2}	\bar{O}_{0}	\bar{O}_{1}	\bar{O}_{2}	$\overline{\mathrm{O}}_{3}$	\bar{O}_{4}	O_{5}	\bar{O}_{6}	O_{7}
H	X	X	X	X	X	H	H	H	H	H	H	H	H
X	H	X	X	X	X	H	H	H	H	H	H	H	H
X	X	L	X	X	X	H	H	H	H	H	H	H	H
L	L	H	L	L	L	L	H	H	H	H	H	H	H
L	L	H	H	L	L	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	L	H	H	H	H	H
L	L	H	H	H	L	H	H	H	L	H	H	H	H
L	L	H	L	L	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H	H
L	L	H	L	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	L

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

Logic Diagram

FIGURE 1. Expansion to 1-of-32 Decoding

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (VCC)
DC Input Diode Current ($I_{1 K}$)
$V_{1}=-0.5 \mathrm{~V}$
$V_{1}=V_{C C}+0.5 V$

$$
-20 \mathrm{~mA}
$$

$$
+20 \mathrm{~mA}
$$

DC Input Voltage (V_{1})
DC Output Diode Current (lok)
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$

$$
-20 \mathrm{~mA}
$$

$V_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

$$
+20 \mathrm{~mA}
$$

DC Output Voltage (V_{O})

DC VCC or Ground Current

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}
$$

DC Output Source or Sink Current (lo)

$$
\pm 50 \mathrm{~mA}
$$ (ICC or IGND)

Storage Temperature ($T_{\text {STG }}$)

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
\pm 200 \mathrm{~mA}
$$

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

DC Latch-Up Source or Sink Current

$$
\pm 300 \mathrm{~mA}
$$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions
Supply Voltage (V_{CC})

LVQ

Input Voltage (V_{1})
Output Voltage (VO)
Operating Temperature $\left(T_{A}\right)$ 74LVQ
Minimum Input Edge Rate $(\Delta V / \Delta t)$
V_{IN} from 0.8 V to 2.0 V
V_{CC} @ 3.0V
2.0 V to 3.6 V OV to V_{CC} OV to $V_{C C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$125 \mathrm{mV} / \mathrm{ns}$

DC Characteristics

Symbol	Parameter	VCc (V)	74 LVQ138		$74 \mathrm{LVQ138}$	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage	3.0	1.5	2.0	2.0	V	$\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } V_{C C}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	3.0	1.5	0.8	0.8	V	$\begin{aligned} & V_{O U T}=0.1 V \\ & \text { or } V_{C C}-0.1 V \end{aligned}$
V OH	Minimum High Level Output Voltage	3.0	2.99	2.9	2.9	V	IOUT $=-50 \mu \mathrm{~A}$
		3.0		2.58	2.48	V	$\begin{aligned} & { }^{\cdot} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$
V_{OL}	Maximum Low Level Outut Voltage	3.0	0.002	0.1	0.1	V	$\mathrm{IOUT}=50 \mu \mathrm{~A}$
		3.0		0.36	0.44	V	$\begin{aligned} & { }^{*} \mathrm{VIN}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
IN	Maximum Input Leakage Current	3.6		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{cc}}, \mathrm{GND}$
IOLD	†Minimum Dynamic Output Current	3.6			36	mA	$\mathrm{V}_{\text {OLD }}=0.8 \mathrm{~V} \operatorname{Max}$ (Note 1)
IOHD		3.6			-25	mA	$\mathrm{V}_{\mathrm{OHD}}=2.0 \mathrm{~V}$ Min (Note 1)

-All outputs loaded; thresholds on input associated with output under test.

DC Characteristics (Continued)

Symbol	Parameter	$V_{C c}$ (V)			74LVQ138	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits			
ICC	Maximum Quiescent Supply Current	3.6		4.0	40.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathbb{N}}=V_{C C} \\ & \text { or GND } \end{aligned}$
Volp	Quiet Output Maximum Dynamic V_{OL}	3.3		0.8		V	(Notes 2 \& 3)
Volv	Quiet Output Minimum Dynamic V_{OL}	3.3		-0.8		V	(Notes 2 \& 3)
$\mathrm{V}_{\text {IHD }}$	Maximum High Level Dynamic Input Voltage	3.3	1.7	2.0		V	(Notes 2 \& 4)
VILD	Maximum Low Level Dynamic Input Voltage	3.3	1.7	0.8		V	(Notes 2 \& 4)

\dagger Maximum test duration 2.0 ms , one output loaded at a time.
Note 1: Incident wave switching on transmission lines with impedances as low as 75Ω for commercial temperature range is guaranteed for 74 LVQ .
Note 2: Worst case package.
Note 3: Max number of outputs defined as (n). Data inputs are driven OV to 3.3 V ; one output at GND.
Note 4: Max number of Data Inputs (n) switching. ($n-1$) inputs switching OV to 3.3V. Input-under-test switching: 3.3V to threshold (V_{IL}), OV to threshold $\left(V_{1 H D}\right), 1=1 \mathrm{MHz}$.

AC Electrical Characteristics: See Section 2 for Test Methodology

Symbol	Parameter	VCC (V)	74LVQ138$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \text { 74LVQ138 } \\ \hline T_{A}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay $A_{n} \text { to } \bar{O}_{n}$	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.2 \\ 8.5 \end{gathered}$	$\begin{aligned} & 18.3 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 15.0 \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation Delay $A_{n} \text { to } \bar{O}_{n}$	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9.6 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 17.6 \\ 12.5 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 20.0 \\ 14.0 \\ \hline \end{array}$	ns
$t_{\text {PLH }}$	Propagation Delay \bar{E}_{1} or \bar{E}_{2} to \bar{O}_{n}	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.2 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.0 \\ & 15.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.0 \\ & 16.0 \\ & \hline \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation Delay \bar{E}_{1} or \bar{E}_{2} to $\overline{\mathrm{O}}_{n}$	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 11.4 \\ 9.5 \\ \hline \end{gathered}$	$\begin{aligned} & 19.0 \\ & 13.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.0 \\ & 15.0 \\ & \hline \end{aligned}$	ns
${ }_{\text {PPLH }}$	Propagation Delay E_{3} to O_{n}	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 13.2 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 21.8 \\ & 15.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 23.5 \\ & 16.5 \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation Delay $E_{3} \text { to } \overline{\mathrm{O}}_{n}$	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.2 \\ 8.5 \\ \hline \end{array}$	$\begin{aligned} & 18.3 \\ & 13.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 20.0 \\ 14.0 \\ \hline \end{array}$	ns
toshl, tosLh	Output to Output Skew* Data to Output	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \\ \hline \end{gathered}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	ns

- Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (LOSHJ) or LOW to HIGH (LOSLH). Parameter guaranteed by design.
Capacitance

Symbol	Parameter	Typ	Units	Conditions
$\mathrm{C}_{\mathbb{N}}$	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=$ Open
C_{PD} (Note 1)	Power Dissipation Capacitance	45	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Note 1: $\mathrm{C}_{\text {PD }}$ is measured at 10 MHz .

