74LVX3L384

10-Bit Low Power Bus Switch

General Description

The LVX3L384 provides 10 bits of high-speed CMOS TTLcompatible bus switches. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise. The device is organized as two 5 -bit switches with separate bus enable ($\overline{\mathrm{BE}}$) signals. When $\overline{\mathrm{BE}}$ is low, the switch is on and port A is connected to port B. When $\overline{B E}$ is high, the switch is open and a high-impedance state exists between the two ports.

Features

- 5Ω switch connection between two ports
- Zero propagation delay
- Ultra low power with 0.2μ A typical ICC
- Zero ground bounce in flow-through mode
- Control inputs compatible with TTL level
- Available in SOIC and QSOP (SSOP 0.15" Body width)

Ordering Code: See Section 11

Logic Diagram

TL/F/11653-1

Connection Diagram

Pin Assignment for SOIC and QSOP

TL/F/11653-2

Truth Table

$\overline{B E} A$	$\overline{\text { BE }} \mathrm{B}$	$\mathrm{B}_{0}-\mathrm{B}_{4}$	$\mathrm{B}_{5}-\mathrm{B}_{9}$	Function
L	L	$\mathrm{A}_{0}-\mathrm{A}_{4}$	$\mathrm{A}_{5}-\mathrm{A}_{9}$	Connect
L	H	$\mathrm{A}_{0}-\mathrm{A}_{4}$	HIGH-Z State	Connect
H	L	HIGH-Z State	$\mathrm{A}_{5}-\mathrm{A}_{9}$	Connect
H	H	HIGH-Z State	HIGH-Z State	Disconnect

Pin Names	Description
$\overline{\mathrm{BE}} \mathrm{A}, \overline{\mathrm{BE}} \mathrm{B}$	Bus Switch Enable
$\mathrm{A}_{0}-\mathrm{A}_{9}$	Bus A
$\mathrm{B}_{0}-\mathrm{B}_{9}$	Bus B

	SOIC JEDEC	SSOP JEDEC
Order Number	74LVX3L384WM	74LVX3L384QSC
	74LVX3L384WMX	74LVX3L384QSCX
See NS Package Number	M24B	MQA24

Preliminary Data: National Semiconductor reserves the right to make changes at any time without notice.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
DC Switch Voltage (V)
DC Input Input Voltage (V_{1}) (Note 2)
DC Input Diode Current with $\left(V_{1}<0\right)$
-0.5 V to +7.0 V
-0.5 to +7.0 V
-0.5 to +7.0 V

$$
-20 \mathrm{~mA}
$$

$$
120 \mathrm{~mA}
$$

Storage Temperature Range (TSTG) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation 0.5W
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

Supply Voltage (VCC)
Free Air Operating Temperature (T_{A})

DC Electrical Characteristics

Symbol	Parameter	$V_{C c}$ (V)		ALVX3L38		Units	Conditions
			$T_{\text {A }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			Min	Typ (Note 3)	Max		
V_{IK}	Maximum Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{IH}	Minimum High Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	4.0-5.5			0.8		
IN	Maximum Input Leakage Current	0			10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$
		5.5			± 1		
lOZ	Maximum TRI-STATE ${ }^{\text {® }}$ I/O Leakage	5.5			± 1	$\mu \mathrm{A}$	$0 \leq A, B \leq V_{C C}$
los	Short Circuit Current	4.5	100			mA	$\begin{aligned} & V_{1}(A), V_{1}(B)=0 V \\ & V_{1}(B), V_{1}(A)=4.5 V \end{aligned}$
RON	Switch On Resistance (Note 1)	4.5		5	7	Ω	$V_{1}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=30 \mathrm{~mA}$
				10	15	Ω	$\mathrm{V}_{1}=2.4 \mathrm{~V}, \mathrm{I}_{\text {ON }}=15 \mathrm{~mA}$
Icc	Maximum Quiescent Supply Current	5.5		0.2	3.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{1}=V_{C c}, \text { GND } \\ & l_{0}=0 \end{aligned}$
$\Delta l_{\text {CC }}$	Increase in ICC per Input (Note 2)	5.5			2.5	mA	$V_{I N}=3.4 V, l_{0}=0$ Per Control Input

Note 1: Measured by voltage drop between A and B pin at indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.
Note 2: Per TTL driven Input ($\mathrm{V}_{\mathbb{N}}=3.4 \mathrm{~V}$, control inputs only). A and B pins do not contribute to $\mathrm{I} C \mathrm{C}$.
Note 3: All typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC Electrical Characteristics: See Section 2 for Test Methodology

Symbol	Parameter	$V_{C C}$ (V)	74LVX3L384			Units
			$\begin{gathered} T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
			Min	Typ (Note 2)	Max	
$T_{\text {PLH }}$ TPHL	Data Propagation Delay An to Bn or Bn to An (Note 1)	4.5			0.25	ns
$T_{P Z L}$ TPZH	Switch Enable Time $\overline{B E}_{A}, \overline{B E}_{B}$ to $A n, B n$	4.5	1.5		6.5	ns
TPLZ TPHZ	Switch Disable Time $\overline{B E}_{A}, \overline{B E}_{B}$ to $A n, B n$	4.5	1.5		5.5	ns

Note 1: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On resistance of the switch and the load capacitance. The time constant for the switch and alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
Note 2: All typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Capacitance (Note)

Symbol	Parameter	Typ	Max	Units	Conditions
$\mathrm{C}_{I \mathrm{~N}}$	Control Input Capacitance	4		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\text {I/O }}$ (ON)	Input/Output Capacitance	8		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\text {I/O }}$ (OFF)	Input/Output Capacitance	6		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Note: Capacitance is characterized but not tested.

