FAIRCHILD

SEMICONDUCTOR

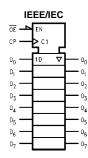
74VHCT574A **Octal D-Type Flip-Flop with 3-STATE Outputs**

General Description

The VHCT574A is an advanced high speed CMOS octal flip-flop with 3-STATE output fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. This 8-bit D-type flipflop is controlled by a clock input (CP) and an Output Enable input (OE). When the OE input is HIGH, the eight outputs are in a high impedance state.

Protection circuits ensure that 0V to 7V can be applied to the input and output (Note 1) pins without regard to the supply voltage. This device can be used to interface 3V to 5V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages. Note 1: Outputs in OFF-State.

Features


- High speed: $f_{MAX} = 140 \text{ MHz}$ (typ) at $T_A = 25^{\circ}\text{C}$
- Power Down Protection is provided on all inputs and outputs.
- Low Noise: V_{OLP} = 1.6V (max) ■ Low Power Dissipation:
- $I_{CC}=4~\mu\text{A}$ (max) @ $T_{A}=25^{\circ}\text{C}$
- Pin and Function Compatible with 74HCT574

Ordering Code:

Order Number	Package Number	Package Description
74VHCT574AM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74VHCT574ASJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHCT574AMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHCT574AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

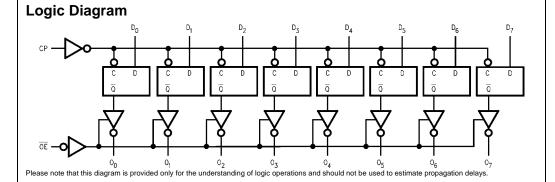
				-
0E -	1	\bigcirc	20	- v _{cc}
D ₀ —	2		19	— 0 ₀
D ₁ —	3		18	- 0 ₁
D ₂ —	4		17	- 0 ₂
D3 —	5		16	- 03
D ₄ —	6		15	— 0 ₄
D ₅ —	7		14	- 0 ₅
D ₆ —	8		13	— 0 ₆
D ₇ —	9		12	- 0 ₇
GND —	10		11	— СР

Pin Descriptions

Pin Names	Description
D ₀ –D ₇	Data Inputs
CP	Clock Pulse Input 3-STATE
OE	Output Enable Input 3-STATE
0 ₀ –0 ₇	Outputs

Functional Description

The VHCT574A consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are com-mon to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flipflops.


Truth Table

	Inputs	Outputs	
D _n	CP	OE	O _n
н	~	L	н
L	~	L	L
х	х	н	Z

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Z = High Impedance $\mathcal{I} = LOW-to-HIGH Transition$

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (V _{IN})	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	
(Note 3)	$-0.5 V$ to $V_{CC} + 0.5 V$
(Note 4)	-0.5V to +7.0V
Input Diode Current (I _{IK})	–20 mA
Output Diode Current (I _{OK}) (Note 5)	±20 mA
DC Output Current (I _{OUT})	±25 mA
DC V _{CC} /GND Current (I _{CC})	±75 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 6)

4.5V to +5.5V
0V to +5.5V
0V to V _{CC}
0V to +5.5V
$-40^{\circ}C$ to $+85^{\circ}C$
0 ns/V ~ 20 ns/V

Note 2: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.

Note 3: HIGH or LOW state. \mathbf{I}_{OUT} absolute maximum rating must be observed.

Note 4: When outputs are in OFF-State or when $V_{CC} = OV$.

Note 5: $V_{OUT} < GND, \, V_{OUT} > V_{CC}$ (Outputs Active).

Note 6: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Vcc		$T_A = 25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	
Symbol	Falameter	(V)	Min	Тур	Max	Min	Max	Units	conditions	
V _{IH}	HIGH Level	4.5	2.0			2.0		V		
	Input Voltage	5.5	2.0			20		v		
V _{IL}	LOW Level	4.5			0.8		0.8	V		
	Input Voltage	5.5			0.8		0.8	v		
V _{OH}	HIGH Level	4.5	4.40	4.50		4.40		V	$V_{IN} = V_{IH}$ $I_{OH} = -50 \ \mu A$	
	Output Voltage	4.5	3.94			3.80		V	or V_{IL} $I_{OH} = -8 \text{ mA}$	
V _{OL}	LOW Level	4.5		0.0	0.1		0.1	V	$V_{IN} = V_{IH}$ $I_{OL} = 50 \ \mu A$	
	Output Voltage	4.5			0.36		0.44	V	or V _{IL} I _{OL} = 8 mA	
I _{OZ}	3-STATE Output	5.5			±0.25		±2.5	μA	$V_{IN} = V_{IH} \text{ or } V_{IL}$	
	Off-State Current	5.5			±0.25		±2.5		$V_{OUT} = V_{CC}$ or GND	
I _{IN}	Input Leakage	0-5.5			±0.1		±1.0	μA	$V_{IN} = 5.5V \text{ or GND}$	
	Current	0-0.0			10.1		1.0	μΛ		
I _{CC}	Quiescent Supply	5.5			4.0		40.0	μA	$V_{IN} = V_{CC}$ or GND	
	Current	0.0			4.0		40.0	μΛ		
ICCT	Maximum I _{CC} /Input	5.5			1.35		1.50	mA	V _{IN} = 3.4V	
		5.5			1.55		1.50		Other Input = V_{CC} or GND	
I _{OFF}	Output Leakage Current	0.0			0.5		5.0	μA	$V_{OUT} = 5.5V$	
	(Power Down State)	0.0			0.5		5.0	μΛ		

74VHCT574A

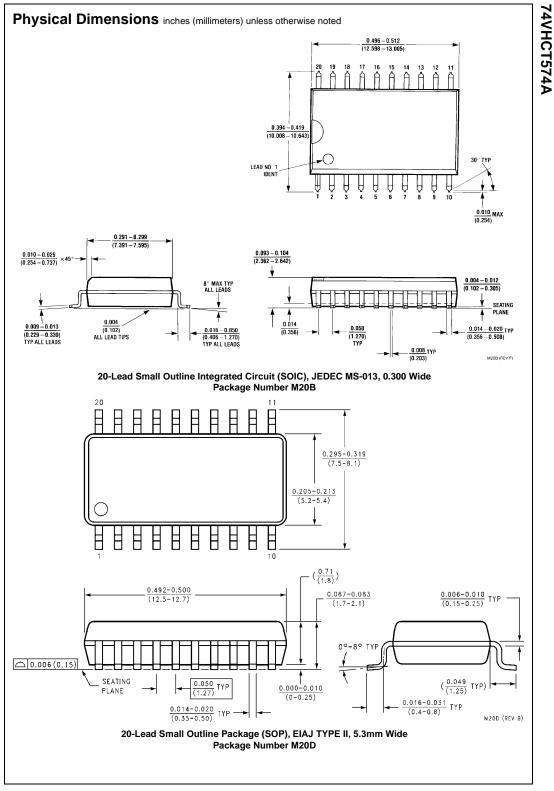
www.fairchildsemi.com

74VHCT574A

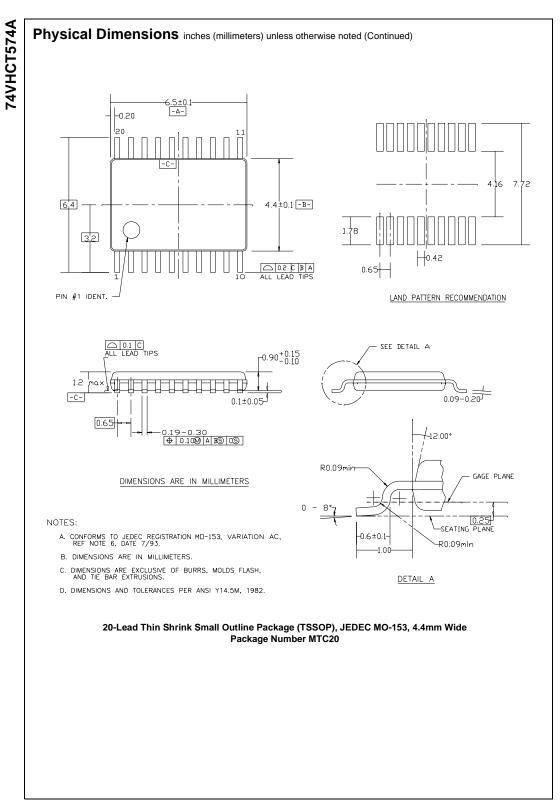
Noise Characteristics $T_A = 25^\circ C$ V_{CC} (V) Symbol Parameter Units Conditions Limits Тур V_{OLP} Quiet Output Maximum Dynamic V_{OL} 5.0 1.2 1.6 $C_L = 50 \text{ pF}$ ٧ (Note 7) Quiet Output Minimum Dynamic VOL VOLV 5.0 -1.2 -1.6 V $C_L = 50 \text{ pF}$ (Note 7) Minimum HIGH Level Dynamic Input Voltage 5.0 2.0 V_{IHD} V $C_L = 50 \text{ pF}$ (Note 7) V_{ILD} Maximum LOW Level Dynamic Input Voltage 5.0 0.8 V $C_L = 50 \text{ pF}$ (Note 7)

Note 7: Parameter guaranteed by design.

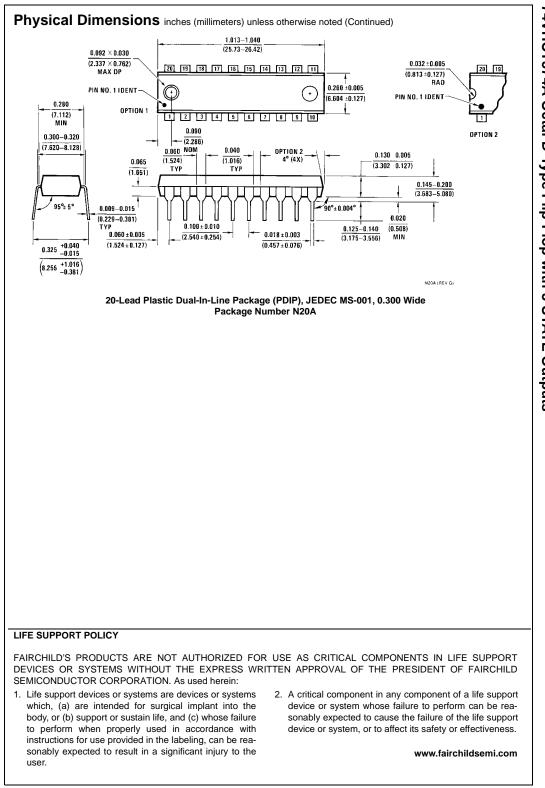
AC Electrical Characteristics


Symbol	Parameter	V _{cc}	$T_A = 25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
0,		(V)	Min	Тур	Max	Min	Max	Onits	Conditions		
t _{PLH}	Propagation Delay	5.0 ± 0.5		4.1	9.4	1.0	10.5			$C_L = 15 \text{ pF}$	
t _{PHL}	Time	5.0±0.5		5.6	10.4	1.0	11.5	ns		$C_L = 50 \text{ pF}$	
t _{PZL}	3-STATE Output	5.0 ± 0.5		6.5	10.2	1.0	11.5	ns	$R_L = 1 \ k\Omega$	$C_L = 15 \text{ pF}$	
t _{PZH}	Enable Time	5.0±0.5		7.3	11.2	1.0	12.5	ns		$C_L = 50 \text{ pF}$	
t _{PLZ}	3-STATE Output	5.0 ± 0.5		7.0	11.2	1.0	12.0		ns	$R_L = 1 \ k\Omega$	$C_L = 50 \text{ pF}$
t _{PHZ}	Disable Time	5.0 ± 0.5		7.0	11.2	1.0	12.0	115			
t _{OSLH}	Output to	50.05			1.0		1.0		(Note 8)		
t _{OSHL}	Output Skew	5.0 ± 0.5			1.0		1.0	ns			
f _{MAX}	Maximum Clock	5.0 ± 0.5	90	140		80				$C_L = 15 \text{ pF}$	
	Frequency	5.0±0.5	85	130		75		MHz		$C_L = 50 \text{ pF}$	
CIN	Input			4	10		10	pF	V _{CC} = Oper	1	
	Capacitance			4	10		10	pн			
C _{OUT}	Output			0				pF	$V_{CC} = 5.0V$		
	Capacitance			9				р⊢			
C _{PD}	Power Dissipation			25				~ F	(Note 9)		
	Capacitance			25				pF			

Note 8: Parameter guaranteed by design. t_{OSLH} = |t_{PLH max} - t_{PLH min}|; t_{OSHL} = |t_{PHL max} - t_{PHL min}|


Note 9: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = $C_{PD} * V_{CC} * f_{IN} + I_{CC}/8$ (per F/F). The total C_{PD} when n pcs. of the Octal D Flip-Flop operates can be calculated by the equation: C_{PD} (total) = 20 + 12n.

AC Operating Requirements


Symbol	Parameter	V _{cc}	$T_A = 25^{\circ}C$			$T_A = -40^\circ$	Units	
Symbol	Farameter	(V)	Min	Тур	Max	Min	Max	Units
t _W (H)	Minimum Pulse Width (CP)	5.0 ± 0.5	6.5			8.5		ns
t _W (L)								
t _S	Minimum Set-Up Time	5.0 ± 0.5	2.5			2.5		ns
t _H	Minimum Hold Time	5.0 ± 0.5	2.5			2.5		115

www.fairchildsemi.com

www.fairchildsemi.com

⁷⁴VHCT574A Octal D-Type Flip-Flop with 3-STATE Outputs

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.