
8178

PRODUCT PREVIEW

(Subject to change without notice)
October 9, 2001

Dwg. PD-0xx

30 V

LOW-DROPOUT, 7.7 V PREREGULATOR

Designed specifically to meet the stringent requirements of automotive applications, the A8178LLT provides an output voltage of 7.7 V $\pm 15\%$ for supply voltages greater than 6.9 V. This device also provide a low-dropout tracking output for supply voltages down to 2.5 V. This regulator is intended to be used with sensitive automotive electronics systems that do not have the capability of low dropout operation and cannot withstand the high-voltage transients typical of automotive applications. This 7.7 V preregulator will withstand all ISO pulses (ignition coil disconnect requires an external diode) and will continue to operate during positive power supply transients (noise).

This device is supplied in a small-outline plastic transistor package for surface-mount applications. The A8178LLT is furnished in the SOT-89/TO-243AA for increased allowable package power dissipation.

ABSOLUTE MAXIMUM RATINGS

Input Voltage V

input voltage, v ₁
Reverse Input Voltage, V _{RI} -120 V
Output Current, I _O TBD*
Operating Temperature Range,
T _A 40°C to +150°C
Junction Temperature, T _J +150°C
Storage Temperature Range,
T _o 40°C to +170°C

^{*} Output current rating is limited by input voltage, duty cycle, and ambient temperature. Under any set of conditions, do not exceed a junction temperature of +150°C. See next page.

This document contains information on a product under development. Allegro MicroSystems, Inc. reserves the right to change or discontinue this product without notice.

Always order by complete part number:

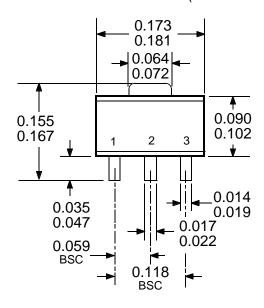
A8178LLT

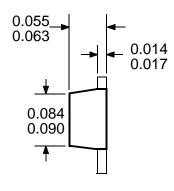
8178 LOW-DROPOUT, 7.7 V PREREGULATOR

ELECTRICAL CHARACTERISTICS over operating temperature range.

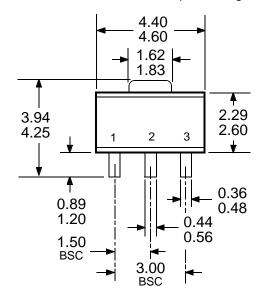
			Limits			
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Output Voltage	V _o	6.9 V ≤ V _I ≤ 24 V	6.5	7.7	8.8	V
		2.5 V ≤ V ₁ ≤ 6.9 V	V _I - 0.4		_	V
		V _I = 120 V, pulse test	_	_	11	V
Output Volt. Temp. Coeff.	α_{VO}		_	_	TBD	mV/°C
Line Regulation	$\Delta V_{O(\Delta VI)}$		_	_	TBD	mV
Load Regulation	$\Delta V_{O(\Delta IO)}$			_	TBD	mV
Quiescent Current	Ι _Q	V _I = 13.5 V, I _O = 0	_	_	2.5	mA
		$2.5 \text{ V} \le \text{V}_{\text{I}} \le 8 \text{ V}, \text{I}_{\text{O}} = 0$	_	_	5.6	mA
Power Dissipation	P_d	V _I = 13.5 V, I _O = 15 mA	_	_	130	mW
Thermal Resistance*	$R_{\scriptscriptstyle{\thetaJA}}$		_	200	_	°C/W

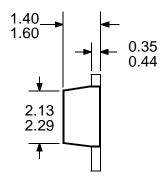
Typical values are at T_A = +25°C and are given for circuit design information only.


INTERNAL PROTECTIVE FEATURES


ISO Pulse No.	Test	Test Conditions (at $T_A = +25^{\circ}C$)
1	Inductive Turn Off (Negative)	$V_S = -100 \text{ V}, R_S = 10 \Omega, t_r = 1 \mu \text{s}, t_d = 2 \text{ ms}$
2	Inductive Turn Off (Positive)	V_S = 100 V, R_S = 10 Ω , t_r = 1 μ s, t_d = 50 μ s, non-operating
3a	Capacitive/Inductive Coupling (Neg)	$V_{S} = -150 \text{ V}, R_{S} = 50 \Omega, t_{r} = 50 \text{ ns}, t_{d} = 100 \text{ ns}$
3b	Capacitive/Inductive Coupling (Pos)	$V_{S} = 100 \text{ V}, R_{S} = 50 \Omega, t_{r} = 50 \text{ ns}, t_{d} = 100 \text{ ns}$
4	Reverse Battery	$V_S = -14 \text{ V}, t_d = 20 \text{ s}, \text{ non-operating}$
5	Load Dump	$V_{S} = 86.5 \text{ V}, R_{S} = 0.5 \Omega, t_{r} = 5 \text{ ms}, t_{d} = 400 \text{ ms}$
6	Ignition Coil Disconnect EXTERNAL PROTECTION REQ'D	V_S = -300 V, R_S = 30 Ω , t_r = 60 μs , t_d = 300 μs
7	Field Decay (Negative)	$V_{S} = -80 \text{ V}, R_{S} = 10 \Omega, t_{r} = 5 \text{ ms}, t_{d} = 100 \text{ ms}$

^{*}Mounted on 2.24" x 2.24" solder-coated copper-clad board in still air.


A8178LLTDimensions in Inches (for reference only)



Dwg. MA-009-3 in

Dimensions in Millimeters (controlling dimensions)

Dwg. MA-009-3 mm

NOTES: 1. Lead spacing tolerance is non-cumulative.

2. Exact body and lead configuration at vendor's option within limits shown.

8178 LOW-DROPOUT, 7.7 V PREREGULATOR

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products.

The information included herein is believed to be accurate and reliable.

However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

