DESCRIPTION

The 8268 is a single-bit full adder with gated true and complementary inputs, complementary sum (Σ and $\bar{\Sigma}$) outputs and an inverted carry output. By taking advantage of the unique true or inverted inputs and true or inverted outputs, parallel addition speed is greatly enhanced (by eliminating unnecessary inversions).

The device is designed for medium speed parallel and serial adder systems.

LOGIC DIAGRAM

DIGITAL 8000 SERIES TTL/MSI
TRUTH TABLE (See Notes 1, 2 and 3)

$\mathrm{C}_{\text {IN }}$	Y	X	$\overline{\mathrm{C}}$ OUT	Σ	$\bar{\Sigma}$
0	0	0	1	1	0
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	0	1	0
1	0	0	1	0	1
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	0	0	1

NOTES

1. $X=\overline{\bar{X} \cdot X_{c}} ; Y=\overline{\bar{Y}} \cdot Y_{c}$
where $\bar{X}=\overline{X_{1} \cdot Y_{2}} ; \bar{Y}=\overline{Y_{1} \cdot Y_{2}}$
2. When \bar{X} or \bar{Y} are used as inputs, X_{1} and X_{2} or Y_{1} and Y_{2} respectively must be tied to GND.
3. When X_{1} and X_{2} or Y_{1} and Y_{2} are used as inputs, \bar{X} or \bar{Y} respectively must be left open or used to perform the WIREDAND function.

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS	LIMITS				TEST CONDITIONS										NOTES
	MIN.	TYP.	MAX.	UNITS	X_{1}	X_{2}	X	$\mathrm{X}_{\mathbf{c}}$	Y_{1}	V_{2}	\mathbf{Y}	Y_{c}	$C_{\text {IN }}$	OUTPUTS	
"1" Output Voltage	2.6	3.5		V	0.8 V	0.8 V	2.0 V	2.0 V	0.8 V	0.8V	0.8 V	2.0 V	0.8 V	$-500 \mu \mathrm{~A}$	6
"'0" Output Voltage			0.4	V	0.8 V	0.8V	2.0 V	2.0 V	0.8 V	0.8V	2.0 V	2.0 V	0.8V	16 mA	7
X_{1}	-0.1		-1.6	mA	0.4 V	4.5 V									
\underline{x}_{2}	-0.1		-1.6	mA	4.5 V	0.4 V									
x	-0.1		-2.6	mA	0.0V	0.0 V	0.4V	4.5 V							
X_{c}	-0.1		-1.6	mA	0.0V	0.0V		0.4 V							
Y_{1}	-0.1		-1.6	mA					0.4 V	4.5 V					
\underline{Y}	-0.1		-1.6	mA					4.5 V	0.4 V					
\bar{Y}^{2}	-0.1		-2.6	mA					0.0 V	0.0 V	0.4V	4.5 V			
Y_{c}	-0.1		-1.6	mA					0.0 V	0.0 V		0.4 V			
${ }_{1} \mathrm{CIN}^{\text {IN }}$	-0.1		-8.0	mA									0.4V		
X_{1}			40	$\mu \mathrm{A}$	4.5 V										
x_{2}			40	$\mu \mathrm{A}$	0.0V										
X_{c}			40	$\mu \mathrm{A}$			0.0V	4.5 V							
Y_{1}			40	$\mu \mathrm{A}$					4.5 V	4.5 V					
Y_{2}			40	$\mu \mathrm{A}$					0.0 V	0.4 V					
Y_{c}			40	$\mu \mathrm{A}$							0.0V	4.5 V		\sim	
$\mathrm{C}_{\text {IN }}$			160	$\mu \mathrm{A}$	0.0V	0.0 V			0.0V	0.0 V			4.5 V		
Input Voltage Rating															12
x_{1}	5.5			V	10 mA	0.0V									
x_{2}	5.5			V	0.0 V	10 mA									
X_{c}	5.5			V			0.0V	10 mA							
Y_{1}	5.5			V					10 mA	0.0V					
Y_{2}	5.5			V					0.0 V	10 mA					
Y_{c}	5.5			V							0.0V	10 mA			
$\mathrm{CIN}^{\text {c }}$	5.5			V									10 mA		

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current flow is defined as into the terminal referenced.
4. Positive logic definition:
$"$ UP" Level $=" 1 "$."DOWN" Level $=" 0 "$.
5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
6. Output source current is supplied through a resistor to ground.
7. Output sink current is supplied through a resistor to V_{CC}
8. Refer to AC Test Figure
9. This test is a measure of the required worst-case data set-up time.
10. Manufacturer reserves the right to make design and process changes and improvements.
11. Not more than one output should be shorted at a time.
12. This test guarantees operation free of input latch-up over the specified operating power supply voltage range.
13. The total time required to perform the $A D D$ function may be determined by summing the delays from X_{1}, X_{2} to \bar{X} or Y, Y_{2} to \bar{Y} with the delay from X_{C} or Y_{C} to Σ or $\bar{\Sigma}$.
14. $V_{C C}=5.25$ volts.

AC TEST FIGURE AND WAVE FORMS

NOTES:

1. Perform test in accordance with test table.
. Each output is tested separately.
2. Voltage values are with respect to network GND terminal.
3. Inputs and outputs not otherwise specified are open.
4. The generator has the following characteristics:
5. Capacitance shown include probe and jig capacitance.
$V_{\text {gen }}=2.6 \mathrm{~V}, \mathrm{tr}=\mathrm{tf} \leqslant 15 \mathrm{~ns} . P W=0.5 \mathrm{~ns}, P R R=1 \mathrm{MHz}$.
6. All resistances are in ohms.

SCHEMATIC DIAGRAM

TEST TABLE (See Note 5)

TEST NO.	OUTPUTS UNDER TEST	APPLY INPUT A TO	APPLY INPUT B TO	$\begin{aligned} \text { APPLY } \\ +2.6 V ~ T O \end{aligned}$	APPLY GND TO	OUTPULY
1	$\bar{C}_{\text {out }}$	None	$\mathrm{C}_{\text {in }}$	None	Y_{1}	$\bar{C}_{\text {out }}$
2	$\bar{C}_{\text {out }}$	None	$\mathrm{Cin}_{\text {in }}$	None	Y_{1}	$\mathrm{C}_{\text {out }}$
3	$\bar{C}_{\text {out }}$	Y_{c}	None	$\mathrm{C}_{\text {in }}$	X_{1}, Y_{1}	Cout $^{\text {cout }}$
4	$\widetilde{C}_{\text {out }}$	Y_{c}	None	$\mathrm{Cin}_{\text {in }}$	X_{1}, Y_{1}	$\bar{C}_{\text {out }}$
						Σ
5	Σ	X_{c}	None	$\mathrm{C}_{\text {in }}$	X_{1}, Y_{1}	$\bar{\Sigma}$
						$\bar{C}_{\text {out }}$
						Σ
6	Σ	x_{c}	None	$\mathrm{C}_{\text {in }}$	X_{1}, y_{1}	$\bar{\Sigma}$
						$\bar{C}_{\text {out }}$
7	$\bar{\Sigma}$	Y_{c}	None	$\mathrm{Cin}_{\text {in }}$	Y_{1}	$\bar{\Sigma}$
8	$\bar{\Sigma}$	Y_{c}	None	$\mathrm{C}_{\text {in }}$	Y_{1}	$\bar{\Sigma}$
9	\bar{X}	None	X_{1}	X_{2}	None	$\bar{X}(C L=15 \mathrm{pF})$
10	\bar{X}	None	X_{1}	X_{2}	None	$\bar{X}(C L=15 \mathrm{pF})$
11	$\overline{\mathbf{Y}}$	None	Y_{1}	V_{2}	None	$\mathrm{P}(\mathrm{CL}=15 \mathrm{pF})$
12	$\overline{\mathbf{Y}}$	None	Y_{1}	Y_{2}	None	$\nabla(C L=15 \mathrm{pF})$

TYPICAL APPLICATIONS
4-BIT SERIAL ADD/SUBTRACTOR

N-BIT PARALLEL ADDER

NOTES:
To expand storage register for serial/parallel operation, connect D_{O} to D_{s} of next stage and common the mode control lines and the clock line of the first stage to their respective second stage equivalents.

- NOTE:

To expand output register for parallel outputs common clock, shift and load lines with their respective counterparts. For serial data output, also connect D_{0} of first register to D_{s} of next register.

