DIGITAL 8000 SERIES TTL/MSI
TRUTH TABLE*

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature and Voltage)

CHARACTERISTICS	LIMITS				TEST CONDITIONS						NOTES
	MIN.	TYP.	MAX.	UNITS	$\begin{array}{\|c\|} \hline \text { DATA } \\ \text { STROBE } \end{array}$	DATA INPUTS	RESET	$\begin{gathered} \text { CLOCK } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { CLOCK } \\ 2 \\ \hline \end{gathered}$	OUTPUTS	
"1" Output Voltage	2.6	3.5		v	0.8 V	2.0 V	2.0 V		Output A	$-800 \mu \mathrm{~A}$	6,7
"0" Output Voltage			0.4V	v	0.8 V	0.8 V	0.8 V		Output A	16 mA	6.8
"0" Input Current											
Data Strobe	-0.1		-1.6	mA	0.4V		5.25 V				
Data Inputs	-0.1		-1.2	mA		0.4 V					
Reset	-0.1		-3.2	mA	5.25 V		0.4V				
Clock 1	-0.1		-3.2	mA				0.4 V			
Clock 2	-0.1		-1.6	mA					0.4 V		
-1" Input Current											
Data Strobe			40	$\mu \mathrm{A}$	4.5 V		ov				
Data Input			40	$\mu \mathrm{A}$		4.5 V					
Reset			80	$\mu \mathrm{A}$			4.5 V				
Clock 1			80	$\mu \mathrm{A}$				4.5 V			
Clock 2			80	$\mu \mathrm{A}$					4.5 V		
Power/Current Consumption		184/35	236/45	$\mathrm{mW} / \mathrm{mA}$			ov	ov	OV		11
Input Voltage Rating											
Data Strobe	5.5			v	10 mA						
Data Inputs	5.5			v		10 mA					
Reset	5.5			v			10 mA				
Output Short Circuit Current	-10		-60	mA	OV					ov	10. 11

$T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

CHARACTERISTICS	LIMITS				test conditions						NOTES
	MIN.	TYP.	MAX.	UNITS	DATA STROBE	DATA INPUTS	RESET	CLOCK 1	$\begin{gathered} \text { CLOCK } \\ 2 \end{gathered}$	OUTPUTS	
Clock Mode ion Delay Bit A, B, C, D		15	25	ns							9
Clock Mode $t_{\text {off }}$ Delay Bit A, B, C, D		15	25	ns							9
Data/Strobe ton Delay Bit A, B, C, D		20	35	ns							9
Data/Strobe toff Delay Bit A, B, C, D		25	40	ns							9
Toggle Rate	20	25		MHz							9
Strobe Hold Time		25	35	ns		0.8 V	2.0 V	2.0 V	Output A		
Reset Hold Time		20	35	ns	2.0 V	0.8 V		2.0 V	Output A		
Strobe Release Time		30	40								
Reset Release Time		50	75	ns							

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current flow is defined as into the terminal referenced 4. Positive NAND Logic definition:
"UP" Level $=" 1 "$, "DOWN" Level $=" 0 "$.
4. Precautionary measures should be taken to ensure current

IImiting in eccordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
6. Measurements apply to each output and the associated data input independently.
7. Output source current is supplied through a resistor to ground.
8. Output sink current is supplied through a resistor to V_{CC}.
9. Refer to AC Test Figures.
10. Not more than one output should be shorted at a time.
11. $V_{C C}=5.25$ volts.

SCHEMATIC DIAGRAM

8288 BASIC BINARY

AC TEST FIGURES AND WAVEFORMS

AC TEST FIGURES AND WAVEFORMS (Cont'd)

INPUT PULSE:
Amplitude $=3.4 \mathrm{~V}$
${ }^{t_{A}}=100 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$
$t_{B}=300 \mathrm{~ns}$

CLOCK MODE $\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\mathrm{off}}$ DELAY

1. t^{\prime} and $t_{\text {off }}$ are measured from the clock Input of each binary to the O output of thet binary.
2. Each O output will be loaded with the following load circuit:

INPUT PULSE:
Amplitude $=2.6 \mathrm{~V}$
P.W. $=$ 30ns
$t_{r}=t_{f}=5 n s$

STROBE HOLD TIME

INPUT PULSE
AMPLITUDE $=2.6 \mathrm{~V}$
${ }^{t_{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}$

AC TEST FIGURES AND WAVEFORMS (Cont'd)

MINIMUM RESET PULSE WIDTH

INPUT PULSE:
Amplitude $=2.6 \mathrm{~V}$
$t_{r}=t_{f}=5 n$ max.
Note: Outputs must be previously brought
high by placing a " 0 " on the D strobe inpur.
A pulse generator may be substltuted for the switch.

STROBE/RESET RELEASE TIME

Clock, Strobe/Reset Amplitude $=2.6 \mathrm{~V}$ $t_{r}=t_{f}=5 n s \max$. PRR $=1 \mathrm{MHz} 50 \%$ Duty Cvcle.

NOTES:

1. All resistor values are in ohms.
2. All capacitance values are in picofarads and include lig and probe capacitance.
