The counting operation is performed on the falling (negative going) edge of the input clock pulse, however, there is no restriction on transition time since the individual binaries are level sensitive. The data strobe and reset functions are asynchronous with respect to the clock. The 8288 is compatible with all Signetics 8000 series elements.

DESCRIPTION

The 8288 Divide by Twelve Counter is a four-bit subsystem consisting of divide by two and divide by six counters in a 14 pin package. For Divide-by-Twelve operation, output A is connected externally to the clock 2 input.

The 8288 has strobed paralleled data entry capability so that the counter may be preset to any desired output state. A " 1 " or " 0 " at a data input will be transferred to the associated output when the strobe input is put at a " 0 " level. For additional flexibility, the 8288 is provided with a common reset. A " 0 " on the reset line produces " 0 " at all four outputs.

LOGIC DIAGRAM

OUTPUT				
Count	D	C	B	A
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
-Connected for Divide-by-Twelve operation (output A connected to CP2)				

DIGITAL 8000 SERIES TTL/MSI

TRUTH TABLE*

- Connected for Divide-by-Twelve operation (output A connected to CP2)

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS	LIMITS				TEST CONDITIONS						NOTES
	MIN.	TYP.	MAX.	UNITS	DATA STROBE	DATA INPUTS	RESET	CLOCK	$\begin{gathered} \text { CLOCK } \\ \hline \end{gathered}$	OUTPUTS	
"1" Output Voltage	2.6	3.5		V	0.8 V	2.0 V	2.0 V		Output A	$800 \mu \mathrm{~A}$	6,7
'00' Output Voltage			0.4V	V	0.8 V	0.8 V	0.8 V		Output A	16 mA	6, 8
"0" Input Current											
Data Strobe	-0.1		-1.6	mA	0.4 V		5.25V				
Data Inputs	-0.1		-1.2	mA		0.4 V					
Reset	-0.1		-3.2	mA	5.25V		0.4 V				
Clock 1	-0.1		-3.2	mA				0.4V			
Clock 2	-0.1		-1.6	mA					0.4 V		
"1" Input Current											
Data Strobe .			40	$\mu \mathrm{A}$	4.5 V		OV				
Data Input			40	$\mu \mathrm{A}$		4.5 V					
Reset			80	$\mu \mathrm{A}$			4.5				
Clock 1			80	$\mu \mathrm{A}$				4.5V			
Clock 2			80	$\mu \mathrm{A}$					4.5V		

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current flow is defined as into the terminal referenced.
4. Positive NAND Logic definition:
"UP" Level $=" 1 "$, "DOWN" Level $=" 0 "$.
5. Precautionary measures should be taken to ensure current
limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
6. Measurements apply to each output and the associated data input independently.
7. Output source current is supplied through a resistor to ground.
8. Output sink current is supplied through a resistor to V_{CC}
9. Refer to AC Test Figures
10. Manufacturer reserves the right to make design and process changes and improvements.
11. $V_{C C}=5.25$ volts.

SCHEMATIC DIAGRAM

8288 BASIC BINARY

AC TEST FIGURES AND WAVEFORMS

AC TEST FIGURES AND WAVEFORMS (Cont'd)

INPUT PULSE:
Amplitude $=3.4 \mathrm{~V}$
$t_{A}=100 \mathrm{~ns}$
$t_{r}=20 \mathrm{~ns}$
$t_{B}=300 \mathrm{~ns}$

1. $t_{o n}$ and $t_{\text {off }}$ are measured from the clock input of each binary to the Q output of that binary.
2. Each Q output will be loaded with the following load circuit:

INPUT PULSE:
Amplitude $=2.6 \mathrm{~V}$
P.W. $=30 \mathrm{~ns}$
$t_{r}=t_{f}=5 n s$

AC TEST FIGURES AND WAVEFORMS (Cont'd)

STROBE HOLD TIME

A With all outputs initially " 0 ", output shall have a " 0 " to " 1 " transition.
B With all outputs initially " 1 ", outputs shall have a "1" to " 0 " transition.

Amplitude $=2.6 \mathrm{~V}$ (from Pulse Generator) $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=50 \mathrm{~ns}$

AC TEST FIGURES AND WAVEFORMS (Cont'd)

MINIMUM RESET PULSE WIDTH

OUTPUTS
A,B,C,D

INPUT PULSE:
Amplitude $=2.6 \mathrm{~V}$
$t_{r}=t_{f}=5$ ns max.
Note: Outputs must be previously brought
high by placing a " 0 " on the D strobe input.
A pulse generator may be substituted for the switch.

STROBE/RESET RELEASE TIME

Clock, Strobe/Reset Amplitude $=2.6 \mathrm{~V}$ $t_{r}=t_{f}=5 \mathrm{~ns}$ max. PRR $=1 \mathrm{MHz} 50 \%$ Duty Cycle.

NOTES:

1. All resistor values are in ohms.
2. All capacitance values are in picofarads and include jig and probe capacitance. Capacitance as measured on Boonton Electronic Corporation Model 75A-S8 Capacitance Bridge or equivalent. $f=1 \mathrm{MHz}, V_{\text {ac }}=25 \mathrm{mV}_{\text {rms }}$. All diodes are 1N916.
