DESCRIPTION

The 82S100 (Tri-State Outputs) and the 82S 101 (Open Collector Outputs) are Bipolar Programmable Logic Arrays, containing 48 Product terms (AND terms), and 8 output functions. Each output function can be programmed either true active-High ($F p$), or true active-Low (F^{*}). The true state of the output functions is controlled via an output Sum (OR) Matrix by a logical combination of 16 -input variables, or their complements, up to 48 terms.

Both devices are field-programmable, which means that custom patterns are immediately available by following the fusing procedure outlined in this data sheet.

The 82S100 and 82S101 are fully TTL compatible, and include a chip-enable clocking input for output deskewing and inhibit. They feature either Open Collector or Tri-State outputs for ease of expansion of product terms and/or input variables.

FEATURES

- FIELD PROGRAMMABLE (Ni-Cr LINK)

- INPUT VARIABLES - 16
- OUTPUT FUNCTIONS - 8
- PRODUCT TERMS - 48
- ADDRESS ACCESS TIME - 50ns, MAXIMUM
- POWER DISSIPATION - 600mW, TYPICAL
- INPUT LOADING - $(-100 \mu \mathrm{~A})$, MAXIMUM
- OUTPUT OPTION:

TRI-STATE OUTPUTS - 82S100
OPEN COLLECTOR OUTPUTS - 82S101

- OUTPUT DISABLE FUNCTION:

TRI-STATE - Hi-Z
OPEN COLLECTOR - Hi

- CERAMIC DIP

APPLICATIONS

LARGE READ ONLY MEMORY
RANDOM LOGIC
CODE CONVERSION
PERIPHERAL CONTROLLERS
LOOK-UP AND DECISION TABLES
MICROPROGRAMMING
ADDRESS MAPPING
CHARACTER GENERATORS
SEQUENTIAL CONTROLLERS

PIN CONFIGURATION

TRUTH TABLE

LET:
$P_{n}=\Pi_{0}^{15}\left(k_{m} I_{m}+j_{m} I_{m}\right) ; k=0,1, X$ (Don't Care) $n=0,1,2, \ldots . .47$
where:

Unprogrammed state	$: j_{m}=k_{m}=0$
Programmed state	$: j_{m}=\overline{k_{m}}$
$S_{r}=f\left(\sum_{0}^{47} P_{n}\right)$	$; r \equiv p=0,1,2, \ldots, 7$

MODE	P_{n}	$\overline{C E}$	F_{p}	F_{p}^{*}	$S_{r} \stackrel{?}{=}\left(P_{n}\right)$
Disabled (82S 101)	X	1	1	1	X
Disabled (82S100)			$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	
Read	1	0	1	0	YES
	0	0	0	1	
	X	0	0	1	NO

BLOCK DIAGRAM

FPLA TYPICAL LOGIC PATH

ABSOLUTE MAXIMUM RATINGS

	PARAMETER ${ }^{1}$	RATING	UNIT
V_{cc}	Power Supply Voltage	+7	Vdc
$v_{\text {in }}$	Input Voltage	+5.5	Vdc
V_{OH}	High Level Output Voltage (82S101)	+5.5	Vdc
$\mathrm{v}_{\text {O }}$	Off-State Output Voltage (82S100)	+5.5	Vdc
T_{A}	Operating Temperature Range	0° to $+75^{\circ}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65° to $+150^{\circ}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C} ; 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER		TEST CONDITIONS		LIMITS			UNIT	NOTES		
		MIN	TYP ${ }^{2}$	MAX						
$\mathrm{V}_{\text {IH }}$	High-Level Input Voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA} \end{aligned}$		2	-0.8	$\begin{array}{r} 0.8 \\ -1.2 \end{array}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	1
$V_{\text {IL }}$	Low-Level Input Voltage	1								
$V_{\text {IC }}$	Input Clamp Voltage	1,7								
$\mathrm{V}_{\text {OH }}$	High-Level Output Voltage (82S100)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$		2.4			V	1,5		
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=9.6 \mathrm{~mA}$			0.35	0.45	V	1,8		
Iolk	Output Leakage Current (82S101)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$V_{\text {OUT }}=5.25 \mathrm{~V}$ $V_{\text {OUT }}=5.25 \mathrm{~V}$ $V_{\text {OUT }}=0.45 \mathrm{~V}$		1	40	$\mu \mathrm{A}$	6		
Io(off)	Hi-Z State Output Current (82S100)				1 -1	40 -40	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	6		
$\begin{aligned} & I_{\mathrm{IH}} \\ & I_{\mathrm{L}} \end{aligned}$	High-Level Input Current Low-Level Input Current	$\begin{aligned} & V_{I N}=5.5 \mathrm{~V} \\ & V_{I N}=0.45 \mathrm{~V} \end{aligned}$			$\begin{gathered} <1 \\ -10 \end{gathered}$	$\begin{array}{r} 25 \\ -100 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$			
Ios	Short-Circuit Output Current (82S100)	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		-20		-70	mA	3,7		
$I_{\text {cc }}$	$\mathrm{V}_{\text {cc }}$ Supply Current (82S100, 82S101)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			120	170	mA	4		
$\left\lvert\, \begin{aligned} & c_{1 N} \\ & c_{0} \end{aligned}\right.$	Input Capacitance Output Capacitance	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	$\begin{aligned} & v_{\text {IN }}=2.0 \mathrm{~V} \\ & v_{\text {OUT }}=2.0 \mathrm{~V} \end{aligned}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	6		

NOTES:

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Duration of short circuit should not exceed one second.
4. ICC is measured with the chip enable input grounded, all other inputs at 4.5 V and the outputs open.
5. Measured with $V_{I L}$ applied to $\overline{C E}$ and a logic " 1 " stored.
6. Measured with $V_{I H}$ applied to $\overline{C E}$.
7. Test each output one at the time.
8. Measured with a programmed logic condition for which the output under test is at a " 0 " logic level. Output sink current is supplied thru a resistor to VCC.

SWITCHING CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		MIN	TYP ${ }^{2}$	MAX			
Propagation Delay							
	Input to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		35	50	ns	
TCD	Chip Disable to Output	$\mathrm{R}_{1}=270$		15	20	ns	
	Chip Enable to Output	$\mathrm{R}_{2}=600$		15	20	ns	

AC TEST FIGURE AND WAVEFORM

NOTES:

1. Positive current is defined as into the terminal referenced.
2. Typical values are at $V_{C C}=5.0 \mathrm{~V}$, and $T_{A}=+25^{\circ} \mathrm{C}$.

OBJECTIVE PROGRAMMING PROCEDURE

The 82S100/101 are shipped in an unprogrammed state, characterized by:
A. All internal Ni-Cr links are intact.
B. Each product term (P-term) contains both true and complement values of every input variable I_{m} (P-terms always logically "FALSE").
C. The Sum Matrix contains all 48 P-terms.
D. The polarity of each output is set to active HIGH (F_{p} function).
E. All outputs are at a LOW logic level.

To program each of 8 Boolean logic functions of 16 true or complement variables, including up to 48 P-terms, follow the Program/Verify procedures for the Product Matrix, Sum Matrix, and Output Polarity outlined below.

OUTPUT POLARITY

PROGRAM ACTIVE LOW (F_{p}^{*} Function)
Program output polarity before programming Product Matrix and Sum Matrix. Program one output at the time.

1. Set GND (pin 14) to OV.
2. Do not apply power to the device (V_{CC}, pin 28 , open).
3. Apply $\mathrm{V}_{\mathrm{OUT}}=+18 \mathrm{~V}$ to the appropriate output for 1 ms , and return to OV .
4. Repeat step 3 to program other outputs.

VERIFY OUTPUT POLARITY

1. Set GND (pin 14) to $O V$, and $V_{C C}$ (pin 28) to $+5 V$.
2. Enable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to LOW logic level.
3. Disable input variables by applying $\mathrm{V}_{1 \mathrm{~N}}=+10 \mathrm{~V}$ to all inputs IO through I_{15}.
4. Verify output polarity by sensing the logic state of outputs F_{0} through F_{7}. All outputs at a HIGH logic level are programmed active HIGH (F_{p} function), while all outputs at a LOW logic level are programmed active LOW (F_{p}^{*} function).
5. Remove $V_{I N}=+10 \mathrm{~V}$ from inputs I_{0} through I_{15}.

PRODUCT MATRIX

PROGRAM INPUT VARIABLE

Program one input at the time and one P-term at the time. All input variable links of unused P-terms are not required to be fused. However, unused input variables must be programmed as Don't Care for all programmed P-terms.

1. Set GND (pin 14) to $O V$, and $V_{C C}$ (pin 28) to +5 V .
2. Disable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to HIGH logic level.
3. Disable input variables by applying $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$ to all inputs I_{0} through 115 .
4. Address the P-term to be programmed (No. 0 through 47) by applying the corresponding binary code to
outputs F_{0} through F_{5} with F_{0} as LSB. Use standard TTL logic levels.
5a. If the P-term contains neither I_{0} nor \bar{I}_{0} (input is a Don't Care), fuse both I_{0} and $\overline{\mathrm{I}}_{0}$ links by executing both steps $5 b$ and 5 c , before continuing with step 7 .
$5 b$. If the P-term contains I_{0}, set to fuse the Γ_{0} link by lowering the input voltage to I_{0} from $V_{I N}=+10 \mathrm{~V}$ to a HIGH logic level. Execute step 6.
5 c . If the P -term contains $\overline{\mathrm{I}}_{\mathrm{O}}$, set to fuse the I_{0} link by lowering the input voltage to I_{0} from $V_{I N}=+10 \mathrm{~V}$ to a LOW logic level. Execute step 6.

6a. After 10μ s delay, raise FE (pin 1) from 0 V to +17 V . The source must have a current limit of 250 mA , and rise time of 10 to $50 \mu \mathrm{~s}$.
6 b. After 10μ s delay, pulse the $\overline{C E}$ input to +10 V for a period of 1 ms .
6c. After 10μ s delay, return FE input to OV.
7. Return input I_{0} to a disable state by applying $\vee_{I N}=$ +10 V .
8. Repeat steps 5 through 7 for all other input variables.
9. Repeat steps 4 through 8 for all other P-terms.
10. Remove $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$ from all input variables.

VERIFY INPUT VARIABLE

1. Set GND (pin 14) to $0 V$, and $V_{C C}$ (pin 28) to +5 V .
2. Enable F_{7} output by setting $\overline{C E}$ to +10 V .
3. Disable input variables by applying $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$ to inputs I_{0} through I_{15}.
4. Address the P -term to be verified (No. \mathbf{O} through 47) by applying the corresponding binary code to outputs F_{0} through F_{5}.
5. Interrogate input variable I_{0} as follows:
A. Lower the input voltage to I_{0} from $V_{I N}=+10 \mathrm{~V}$ to a HIGH logic level, and sense the state of output F_{7}.
B. Lower the input voltage to I_{0} from a HIGH to a LOW logic level, and sense the logic state of output F_{7}.
The state of I_{0} contained in the P-term is determined in accordance with the following truth table:

$\mathbf{I}_{\mathbf{0}}$	F_{7}	Input Variable State Contained In P-Term
0	1	$\overline{I_{0}}$
1	0	I_{0}
0	0	Dont Care
1	1	
0	1	$\left(I_{0}\right),\left(\overline{I_{0}}\right)$
1	1	
0	0	0

Note that two tests are required to uniquely determine the state of the input variable contained in the P-term.
6. Return input I_{0} to a disable state by applying $V_{I N}$ $=+10 \mathrm{~V}$.
7. Repeat steps 5 and 6 for all other input variables.
8. Repeat steps 4 through 7 for all other P-terms.
9. Remove $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$ from all input variables.

SUM MATRIX
 PROGRAM PRODUCT TERM

Program one output at the time for one P-term at the time. All P_{n} links of unused P-terms in the Sum Matrix are not required to be fused.

1. Set GND (pin 14) to 0 V , and V_{CC} (pin 28) to +8.5 V .
2. Disable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to a HIGH logic level.
3. Address the P-term to be programmed (No. 0 through 47) by applying the corresponding binary code to input variables I_{0} through I_{5}, with I_{0} as LSB. Use standard TTL levels.
4a. If the P -term is contained in output function F_{0} ($F_{0}=1$ or $F_{0}^{*}=0$), go to step 6.

4b. If the P-term is not contained in output function $F_{0}\left(F_{0}=0\right.$ or $\left.F_{0}^{*}=1\right)$, set to fuse the P_{n} link by applying $\mathrm{V}_{\text {OUT }}=+10 \mathrm{~V}$ to output F_{0}.
5a. After 10μ s delay, raise FE (pin 1) from 0 V to +17 V .
5b. After 10μ s delay, pulse the $\overline{\mathrm{CE}}$ input to +10 V for a period of 1 ms .
5c. After $10 \mu \mathrm{~s}$ delay, return FE input to OV .
6. Repeat steps 4 and 5 for all other output functions.
7. Repeat steps 3 through 6 for all other P-terms.
8. Remove +8.5 V from V_{CC}.

VERIFY PRODUCT TERM

1. Set GND (pin 14) to 0 V , and V_{CC} (pin 28) to +8.5 V .
2. Enable the chip by setting $\overline{C E}$ (pin 19) to a LOW logic level.
3. Address the P-term to be verified (No. 0 through 47) by applying the corresponding binary code to input variables I_{0} through I_{5}, with I_{0} as the LSB. Use standard TTL levels.
4. To determine the status of the P_{n} link in the Sum Matrix for each output function F_{p} or F_{p}^{*}, sense the state of outputs F_{0} through F_{7}. The status of the link is given by the following truth table:

Output		P-term Link
Active HIGH $\left(F_{p}\right)$	Active LOW $\left(F_{p}^{*}\right)$	
0	1	FUSED
1	0	PRESENT

5. Repeat steps 3 and 4 for all other P-terms.
6. Remove +8.5 V from V_{CC}.
