

BIPOLAR FIELD-PROGRAMMABLE LOGIC ARRAY (16X8X48 FPLA) 82S101 (DPEN COLLECTOR) 82S100 (TRI-STATE)

OBJECTIVE SPECIFICATION

APRIL 1975

82S100

82S101

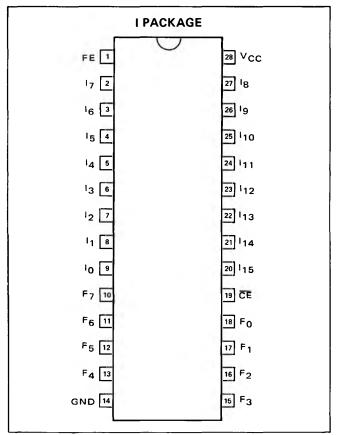
DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The 82S100 (Tri-State Outputs) and the 82S101 (Open Collector Outputs) are Bipolar Programmable Logic Arrays, containing 48 Product terms (AND terms), and 8 output functions. Each output function can be programmed either true active-High (Fp), or true active-Low (F_p^*). The true state of the output functions is controlled via an output Sum (OR) Matrix by a logical combination of 16-input variables, or their complements, up to 48 terms.

Both devices are field-programmable, which means that custom patterns are immediately available by following the fusing procedure outlined in this data sheet.

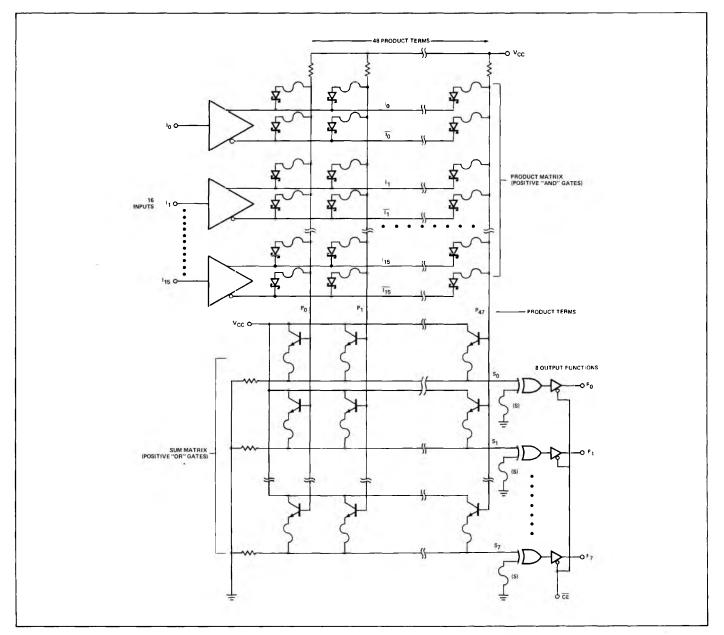
The 82S100 and 82S101 are fully TTL compatible, and include a chip-enable clocking input for output deskewing and inhibit. They feature either Open Collector or Tri-State outputs for ease of expansion of product terms and/or input variables.

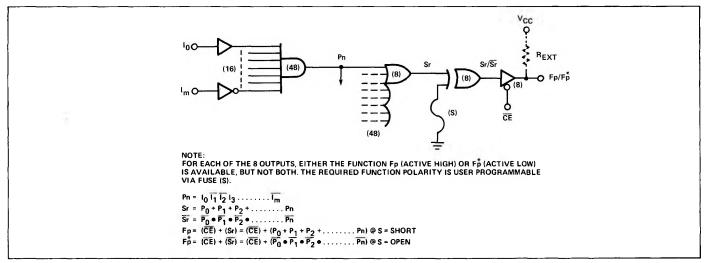

FEATURES

- FIELD PROGRAMMABLE (Ni-Cr LINK)
- INPUT VARIABLES 16
- OUTPUT FUNCTIONS 8
- PRODUCT TERMS 48
- ADDRESS ACCESS TIME 50ns, MAXIMUM
- POWER DISSIPATION 600mW, TYPICAL
- INPUT LOADING -- (-100μA), MAXIMUM
- OUTPUT OPTION: TRI-STATE OUTPUTS – 82S100 OPEN COLLECTOR OUTPUTS – 82S101
- OUTPUT DISABLE FUNCTION: TRI-STATE – Hi-Z OPEN COLLECTOR – Hi
- CERAMIC DIP

APPLICATIONS

LARGE READ ONLY MEMORY RANDOM LOGIC CODE CONVERSION PERIPHERAL CONTROLLERS LOOK-UP AND DECISION TABLES MICROPROGRAMMING ADDRESS MAPPING CHARACTER GENERATORS SEQUENTIAL CONTROLLERS


PIN CONFIGURATION


TRUTH TABLE

LET: $P_n = \prod_0^{15}$ (k	m ¹ m+	im ^I m)			X (Don't Care 2, , 47	e)
where:				0, 1,	2,,,,,,	
Unprogrammed state			: jm	= k _m =	0	
Programme				= km		
$S_r = f(\Sigma_0^{47})$	P _n)		; r	≡ p = 0,	1, 2, , 7	
				_		
MODE	Pn	CE	Fp	Fp	S _r [?] f (P _n)	
Disabled (82S101)			1	1	v	
	×	1	1 Hi-Z	1 Hi-Z	×	
(82S101) Disabled	X	1			X YES	
(82S101) Disabled			Hi-Z	Hi-Z		
(82S101) Disabled (82S100)	1	0	Hi-Z	Hi-Z 0		

BLOCK DIAGRAM

FPLA TYPICAL LOGIC PATH

ABSOLUTE MAXIMUM RATINGS

	PARAMETER ¹	RATING	UNIT
V _{CC}	Power Supply Voltage	+7	Vdc
V _{in}	Input Voltage	+5.5	Vdc
V _{ОН}	High Level Output Voltage (82S101)	+5.5	Vdc
vo	Off-State Output Voltage (82S100)	+5.5	Vdc
T _A	Operating Temperature Range	0° to +75°	°c
T _{stg}	Storage Temperature Range	-65° to $+150^{\circ}$	°c

ELECTRICAL CHARACTERISTICS $0^{\circ}C \leq T_{A} \leq 75^{\circ}C$; 4.75V $\leq V_{CC} \leq 5.25V$

PARAMETER		TEST CONDITIONS		LIMITS				NOTES
				MIN	TYP ²	MAX	UNIT	NOTES
VIH	High-Level Input Voltage	V _{CC} = 5.25V	· · · · · ·	2			v	1
VIL	Low-Level Input Voltage	V _{CC} = 4.75V				0.8	v	1
V _{IC}	Input Clamp Voltage	V _{CC} = 4.75V, I _{IN} = -18mA			-0.8	-1.2	v	1, 7
V _{OH}	High-Level Output Voltage (82S100)	V _{CC} = 4.75V, I _{OH} = -2mA		2.4			V	1, 5
V _{OL}	Low-Level Output Voltage	V _{CC} = 4.75V, I _{OL} = 9.6mA			0.35	0.45	v	1, 8
I _{OLK}	Output Leakage Current (82S101)		V _{OUT} = 5.25V		1	40	μΑ	6
I _{O(OFF)}	Hi-Z State Output Current (82S100)	$V_{CC} = 5.25V$	V _{OUT} = 5.25V V _{OUT} = 0.45V		1 -1	40 -40	μΑ μΑ	6 6
∣ін	High-Level Input Current	V _{IN} = 5.5V			<1	25	μА	
1 _{1L}	Low-Level Input Current	V _{IN} = 0.45V			-10	-100	μΑ	
I _{OS}	Short-Circuit Output Current (82S100)	V _{CC} = 5.25V, V _{OUT} = 0V		-20		-70	mA	3, 7
I _{CC}	V _{CC} Supply Current (82S100, 82S101)	V _{CC} = 5.25V			120	170	mA	4
C _{IN}	Input Capacitance		V _{IN} = 2.0V		5		pF	
Co	Output Capacitance	V _{CC} = 5.0V	V _{OUT} = 2.0V		8		pF	6

NOTES:

1. All voltage values are with respect to network ground terminal.

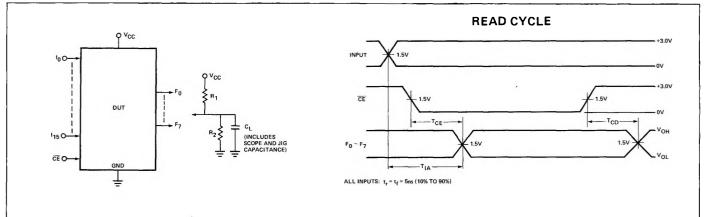
2. All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

3. Duration of short circuit should not exceed one second.

4. I_{CC} is measured with the chip enable input grounded, all other inputs at 4.5V and the outputs open.

5. Measured with V_{1L} applied to \overline{CE} and a logic "1" stored.

6. Measured with V_{1H} applied to CE.


7. Test each output one at the time.

8. Measured with a programmed logic condition for which the output under test is at a "0" logic level. Output sink current is supplied thru a resistor to V_{CC}. .

SWITCHING CHARACTERISTICS $0^{\circ}C \leq T_{A} \leq +75^{\circ}C$, 4.75V $\leq V_{CC} \leq 5.25V$

	PARAMETER	TEST CONDITIONS	MIN	TYP ²	MAX	UNIT	
Propag	ation Delay						
TIA	Input to Output	C _L = 30pF		35	50	ns	
Тср	Chip Disable to Output	R ₁ = 270		15	20	ns	
T _{CE}	Chip Enable to Output	R ₂ = 600		15	20	ns	

AC TEST FIGURE AND WAVEFORM

NOTES:

1. Positive current is defined as into the terminal referenced.

2. Typical values are at V_{CC} = 5.0V, and T_A = +25 $^{\circ}$ C.

OBJECTIVE PROGRAMMING PROCEDURE

The 82S100/101 are shipped in an unprogrammed state, characterized by:

- A. All internal Ni-Cr links are intact.
- B. Each product term (P-term) contains both true and complement values of every input variable I_m (P-terms always logically "FALSE").
- C. The Sum Matrix contains all 48 P-terms.
- D. The polarity of each output is set to active HIGH (Fp function).
- E. All outputs are at a LOW logic level.

To program each of 8 Boolean logic functions of 16 true or complement variables, including up to 48 P-terms, follow the Program/Verify procedures for the Product Matrix, Sum Matrix, and Output Polarity outlined below.

OUTPUT POLARITY

PROGRAM ACTIVE LOW (Fp Function)

Program output polarity before programming Product Matrix and Sum Matrix. Program one output at the time.

- 1. Set GND (pin 14) to OV.
- 2. Do not apply power to the device (V_{CC}, pin 28, open).
- 3. Apply V_{OUT} = +18V to the appropriate output for 1ms, and return to OV.
- 4. Repeat step 3 to program other outputs.

VERIFY OUTPUT POLARITY

- 1. Set GND (pin 14) to OV, and V_{CC} (pin 28) to +5V.
- 2. Enable the chip by setting CE (pin 19) to LOW logic level.
- 3. Disable input variables by applying V_{1N} = +10V to all inputs I₀ through I₁₅.
- 4. Verify output polarity by sensing the logic state of outputs F_0 through F_7 . All outputs at a HIGH logic level are programmed active HIGH (F_p function), while all outputs at a LOW logic level are programmed active LOW (F_p^* function).
- 5. Remove V_{IN} = +10V from inputs I₀ through I₁₅.

PRODUCT MATRIX

PROGRAM INPUT VARIABLE

Program one input at the time and one P-term at the time. All input variable links of unused P-terms are not required to be fused. However, unused input variables must be programmed as Don't Care for all programmed P-terms.

- 1. Set GND (pin 14) to OV, and V_{CC} (pin 28) to +5V.
- Disable the chip by setting CE (pin 19) to HIGH logic level.
- 3. Disable input variables by applying V_{IN} = +10V to all inputs I₀ through I₁₅.
- 4. Address the P-term to be programmed (No. 0 through 47) by applying the corresponding binary code to

outputs F0 through F5 with F0 as LSB. Use standard TTL logic levels.

- 5a. If the P-term contains neither I_0 nor $\overline{I_0}$ (input is a Don't Care), fuse both I_0 and $\overline{I_0}$ links by executing both steps 5b and 5c, before continuing with step 7.
- 5b. If the P-term contains I₀, set to fuse the $\overline{I_0}$ link by lowering the input voltage to I₀ from V_{IN} = +10V to a HIGH logic level. Execute step 6.
- 5c. If the P-term contains $\overline{I_0}$, set to fuse the I₀ link by lowering the input voltage to I₀ from V_{IN} = +10V to a LOW logic level. Execute step 6.
- 6a. After 10 μ s delay, raise FE (pin 1) from 0V to +17V. The source must have a current limit of 250mA, and rise time of 10 to 50 μ s.
- 6b. After 10 μ s delay, pulse the \overline{CE} input to +10V for a period of 1ms.
- 6c. After 10µs delay, return FE input to OV.
- 7. Return input I₀ to a disable state by applying $V_{IN} = +10V$.
- 8. Repeat steps 5 through 7 for all other input variables.
- 9. Repeat steps 4 through 8 for all other P-terms.
- 10. Remove V_{IN} = +10V from all input variables.

VERIFY INPUT VARIABLE

- 1. Set GND (pin 14) to 0V, and V_{CC} (pin 28) to +5V.
- 2. Enable F7 output by setting CE to +10V.
- 3. Disable input variables by applying V_{IN} = +10V to inputs I₀ through I₁₅.
- Address the P-term to be verified (No. 0 through 47) by applying the corresponding binary code to outputs F₀ through F₅.
- 5. Interrogate input variable I₀ as follows:
 - A. Lower the input voltage to I_0 from $V_{IN} = +10V$ to a HIGH logic level, and sense the state of output F7.
 - B. Lower the input voltage to I₀ from a HIGH to a LOW logic level, and sense the logic state of output F₇.

The state of I₀ contained in the P-term is determined in accordance with the following truth table:

IO	F7	Input Variable State Contained In P-Term
0 1	1 0	To
0 1	0 1	1 ₀
0 1	1 1	Dont Care
0 1	0 0	(1 ₀), (1 ₀)

Note that two tests are required to uniquely determine the state of the input variable contained in the P-term.

- 6. Return input I₀ to a disable state by applying V_{IN} = +10V.
- 7. Repeat steps 5 and 6 for all other input variables.
- 8. Repeat steps 4 through 7 for all other P-terms.
- 9. Remove V_{IN} = +10V from all input variables.

SUM MATRIX

PROGRAM PRODUCT TERM

Program one output at the time for one P-term at the time. All P_n links of unused P-terms in the Sum Matrix are not required to be fused.

- 1. Set GND (pin 14) to 0V, and V_{CC} (pin 28) to +8.5V.
- 2. Disable the chip by setting CE (pin 19) to a HIGH logic level.
- Address the P-term to be programmed (No. 0 through 47) by applying the corresponding binary code to input variables 10 through 15, with 10 as LSB. Use standard TTL levels.
- 4a. If the P-term is contained in output function F_0 ($F_0 = 1$ or $F_0^* = 0$), go to step 6.
- 4b. If the P-term is **not** contained in output function F_0 ($F_0 = 0$ or $F_0^* = 1$), set to fuse the P_n link by applying $V_{OUT} = +10V$ to output F_0 .
- 5a. After 10µs delay, raise FE (pin 1) from 0V to +17V.
- 5b. After 10 μ s delay, pulse the \overline{CE} input to +10V for a period of 1ms.
- 5c. After 10µs delay, return FE input to 0V.
- 6. Repeat steps 4 and 5 for all other output functions.
- 7. Repeat steps 3 through 6 for all other P-terms.
- 8. Remove +8.5V from V_{CC}.

VERIFY PRODUCT TERM

- 1. Set GND (pin 14) to 0V, and V_{CC} (pin 28) to +8.5V.
- Enable the chip by setting CE (pin 19) to a LOW logic level.
- Address the P-term to be verified (No. 0 through 47) by applying the corresponding binary code to input variables I₀ through I₅, with I₀ as the LSB. Use standard TTL levels.
- 4. To determine the status of the P_n link in the Sum Matrix for each output function F_p or F_p^* , sense the state of outputs F_0 through F_7 . The status of the link is given by the following truth table:

Out		
Active HIGH (F _p)	Active LOW (F _p *)	P-term Link
0	1	FUSED
11	0	PRESENT

5. Repeat steps 3 and 4 for all other P-terms.

6. Remove +8.5V from V_{CC} .