DESCRIPTION

The 82S 102 and 82S103 are Bipolar programmable AND/NAND gate arrays, containing 9 gates sharing 16 common inputs. On-chip input buffers enable the user to individually program for each gate either the True (1 m), Complement (\bar{I}_{m}), or Don't Care (X) logic state of each input. In addition, the polarity of each gate output is individually programmable to implement either AND or NAND logic functions.
Alternately, if desired, OR/NOR logic functions can also be realized by programming for each gate the complement of its input variables, and output (DeMorgan theorem).
Both devices are field-programmable, which means that custom patterns are immediately available by following the fusing procedure outlined in this data sheet.

The 82S102 and 825103 include chipenable control for output strobing and inhibit. They feature either open collector or tri-state outputs for ease of expansion of input variables and application in busorganized systems.
Both devices are avallable in the commercial and military temperature ranges. For the commercial range $\left(0^{\circ} \mathrm{C}\right.$ to $+75^{\circ} \mathrm{C}$) specify N82S102/103, I or N , and for the military range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$) specify S82S102/103, I.

FEATURES

- Fleld programmable (NI-Cr IInk)
- 16 Input varlables
- 9 output functions
- Chip enable Input
- I/O propagation delay: N82S102/103: 30ns max S82S102/103: 50ns max
- Power dilssipation: 600 mW typ
- Input loading:

N82S102/103: $-100 \mu \mathrm{~A}$ max
S82S102/103: $-150 \mu \mathrm{~A}$ max

- Output options:

82S102: Open collector 82S103: Trl-state

- Output disable function: 82S102: HI 82S103: HI-Z
- Fully TTL compatible

APPLICATIONS

- Random logic
- Address decoders
- Code detectors
- Peripheral selectors
- Fault monltors
- Machine state decoders

LOGIC DIAGRAM

[^0]
ABSOLUTE MAXIMUM RATINGS

PARAMETER		RATING	UNIT
Vcc	Supply voltage	+7	$V d c$
VIN	Input voltage	+5.5	Vdc
	Output voltage		Vdc
VOH	High (82S102)	+5.5	
Vo	Off-state (82S103)	+5.5	
In	Input current	± 30	mA
Iout	Output current	+100	mA
	Temperature range		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Operating		
	N82S102/103	0 to +75	
	S82S102/103	-55 to +125	
TSTG	Storage	-65 to +150	

EQUIVALENT LOGIC PATH

The Field Programmable Gate Array consists of 9 gates with individually programmable inputs and outputs.
The inputs to each gate can be programmed either True (Im), Complement ($\overline{\mathrm{m}}$), or Don't Care via corresponding links (j) and (k). The outputs of each gate can be programmed active-high (F_{ρ}) or active-low (F_{p}^{*}) via corresponding links (S). Thus, each gate provides either of 2 output logic functions in terms of external input logic variables X_{m} as defined below (positive logic):

$$
\begin{aligned}
\text { At } S & =\text { Open: } \\
F p & =C E+\left(X_{0} \bullet X_{1} \bullet X_{2} \bullet \ldots . X(m)=Y p\right. \\
\text { At } S & =C \text { losed: } \\
F \dot{p} & =\overline{C E}+\left(\bar{X}_{0}+\bar{X}_{1}+\bar{X}_{2}+\ldots . X_{m}\right)=y p \\
m & =0,1,2, \ldots .15
\end{aligned}
$$

$p=0,1,2, \ldots \ldots 8$
and where $X_{m}=I_{m}, I_{m}$, Don't Care, as assigned by programming polarity of inputs lo- l15.
When $\overline{C E}=$ low, all gates are enabled, and $F_{p}^{*}=\bar{F}_{p}$ giving $y_{p}=\bar{Y}_{p}$.

PROGRAMMABLE LOGIC FUNCTIONS

All internal links of virgin FPGAs are intact. Therefore, as shown in the Equivalent Logic Path, all symbolic switches are initially closed. Selective programming (opening) of links (J), (K), and (S) enables the user to assign input and output polarities to each gate for implementing NAND, NOR, AND. OR logic functions without changing the routing of input and output wires. This is shown in the following diagrams for a typical gate in terms of 2 input variables, which can be readily extended up to 16 .

DC ELECTRICAL CHARACTERISTICS N82S $102 / 103: 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.25 \mathrm{~V}$

$$
\text { S82S } 102 / 103:-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}
$$

PARAMETER ${ }^{1}$		TEST CONDITIONS	N82S102/103			S82S102/103			UNIT	
		Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max			
$\begin{aligned} & V_{\text {IL }} \\ & V_{\text {IH }} \\ & V_{I C} \end{aligned}$	Input voltage Low ${ }^{1}$ High 1 Clamp ${ }^{1.3}$		$\begin{gathered} V_{C C}=\operatorname{Min} \\ V_{C C}=M a x \\ V_{C C}=M i n, I_{I N}=-18 \mathrm{~mA} \end{gathered}$	2.0	-0.8	$\begin{aligned} & 0.85 \\ & -1.2 \end{aligned}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	V
Vol VOH	Output voltage Low 1.4 High (82S103) 1,5	$\begin{aligned} & \mathrm{VCC}=\mathrm{Min} \\ & 10 \mathrm{C}=9.6 \mathrm{~mA} \\ & \mathrm{IOH}=-2 \mathrm{~mA} \end{aligned}$	2.4	0.35	0.45	2.4	0.35	0.50	V	
$\begin{aligned} & \mathrm{IIL}^{2} \\ & \mathrm{IIH}^{2} \end{aligned}$	Input current Low High	$\begin{aligned} V_{I N} & =0.45 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}} & =5.5 \mathrm{~V} \end{aligned}$		$\begin{gathered} -10 \\ <1 \end{gathered}$	$\begin{gathered} -100 \\ 25 \end{gathered}$		$\begin{aligned} & -10 \\ & <1 \end{aligned}$	$\begin{gathered} -150 \\ 50 \end{gathered}$	$\mu \mathrm{A}$	
Iolk lo(off) los	Output current Leakage (82S102)6 $\mathrm{Hi}-\mathrm{Z}$ state (82S103)6 Short circuit (82S103)3.7	$\begin{aligned} & V_{C C}=M a x \\ & \text { VOUT }=5.5 \mathrm{~V} \\ & \text { VOUT }=5.5 \mathrm{~V} \\ & \text { VOUT }=0.45 \mathrm{~V} \\ & \text { VOUT }=0 \mathrm{~V} \end{aligned}$	-20	$\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$	$\begin{aligned} & 40 \\ & 40 \\ & -40 \\ & -70 \end{aligned}$	-15	$\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$	$\begin{gathered} 60 \\ 60 \\ -60 \\ -85 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA	
Icc	VCC supply current ${ }^{\text {8 }}$	$\mathrm{V}_{\text {cc }}=$ Max		120	170		120	180	mA	
Cin Cout	Capacitance Input Outputs	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} 8 \\ 15 \end{gathered}$			$\begin{gathered} 8 \\ 15 \end{gathered}$		pF	

AC ELECTRICAL CHARACTERISTICS

$R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}$
N82S 102/103: $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
S82S 102/103: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

PARAMETER		то	FROM	N82S102/103			S82S 103/103			UNIT	
		Min		Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max			
$\begin{aligned} & T_{I A} \\ & T_{C E} \end{aligned}$	Access time Input Chip enable		Output Output	Input Chip enable		$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	ns
TcD	Disable time Chip disable	Output	Chip enable		15	30		15	40	ns	

NOTES

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Test each output one at a time.
4. Measured with a programmed logic condition for which the output under test is at a low logic level.

Output sink current is supplied through a resistor to Vcc.
5. Measured with $V_{\text {IL }}$ applied to $\overline{C E}$ and a logic high at the output.
6. Measured with $V_{I H}$ applied to $\overline{C E}$.
7. Duration of short circuit should not exceed 1 second.
8. Icc is measured with the chip enable input grounded, all other inputs at 4.5 V and the oulputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

OUTPUT POLARITY PROGRAM-VERIFY SEQUENCE (TYPICAL)

INPUT MATRIX PROGRAM-VERIFY SEQUENCE (TYPICAL)

VIRGIN DEVICE

The 82S102/103 are shipped in an unprogrammed state, characterized by:

1. All internal Ni-Cr links are intact.
2. Each gate contains both true and complement values of every input variable im (logic Null state).
3. The polarity of each output is set to active low (F_{p}^{*} function).
4. All outputs are at a high logic level.

RECOMMENDED
 PROGRAMMING PROCEDURE

To program each of 9 Boolean logic functions of 16 True, Complement, or Don't Care input variables follow the program/verify procedures for the Input Matrix and Output Polarity outlined below. To maximize recovery from programming errors, leave all links of unused gates intact.

SET-UP

Terminate all device outputs with a $10 \mathrm{~K} \Omega$ resistor to +5 V .

Output Polarity PROGRAM ACTIVE HIGH (Fp FUNCTION)

Program output polarity before programming inputs (for convenience). Program one output at a time. (S) links of unused outputs are not required to be fused.

1. Set GND (pin 14) to $0 V$, and $V_{C C}(\operatorname{pin} 28)$ to Vccv.
2. Disable all device outputs by setting $\overline{\mathrm{CE}}$ (pin 19) to V_{IH}.
3 . Disable all input variables by applying $V_{I X}$ to inputs 10 through l_{15}
A.Raise V_{cc} (pin 28) from $\mathrm{V}_{\mathrm{ccv}}$ to $\mathrm{V}_{\mathrm{ccp}}$.
B After t_{t}) delay, force output to be programmed to Vopf.
C. After to delay, pulse the $\overline{\mathrm{CE}}$ input from V_{IH} to V_{IX} for a period t_{p}.
D.After to delay, remove VOPF voltage source from output being programmed.
E. After to delay, return Vcc (pin 28) to Vccv. and verify.
F. Repeat steps A through E for any other output.

VERIFY OUTPUT POLARITY

1. Set GND (pin 14) to $0 V$, and $V_{C C}($ pin 28) to Vccv.
2. Disable all input variables by applying $\mathrm{V}_{1 \mathrm{X}}$ to inputs I_{0} through l_{15}.
A. After to delay, set the $\overline{C E}$ input to $V_{i L}$.
B.Verify output polarity by sensing the logic state of outputs Fo through F8. All outputs at a low logic level are programmed active low (F_{p} function), while all outputs at a high logic level are programmed active high (F_{p} function).

Input Matrix PROGRAM INPUT VARIABLE

Program one input at a time for one gate at a time. Input variable links of unused gates are not required to be fused. However, unused input variables must be programmed at Don't Care for all used gates.

1. Set GND (pin 14) to OV, and VCC (pin 28) to $\mathrm{V}_{\mathrm{cc}} \mathrm{V}$.
2. Disable all device outputs by setting $\overline{C E}$ (pin 19) to V_{IH}.
3. Disable all input variables by applying $V_{I X}$ to inputs I_{0} through I_{15}
A-1. If a gate contains nether io nor $T 0$ (input is a Don't Care), fuse both j and k links by executing both steps A-2 and A-3. before continuing with step C
A-2.If a gate contains I_{0}, set to fuse the k link by lowering the input voltage at lo from $V_{I X}$ to $V_{I H}$. Execute step B.
A-3.If a gate contains $\overline{0}$, set to fuse the jlink by lowering the input voltage at to from V_{IX} to V_{IL}. Execute step B .
$B-1$. After to delay, raise $V_{C c}$ from $V_{C C V}$ to Vccp.
B-2.After to delay, force output of gate to be programmed to Vopf.
B-3.After to delay, pulse the $\overline{C E}$ input from V_{IH} to $\mathrm{V}_{\text {IL }}$ for a period t_{p}.
B-4.After to delay, remove Vopf voltage source from output of gate being programmed.
B-5.After to delay, return Vcc (pin 28) to $V_{c c v}$, and verify.
C. Disable programmed input by returning to to Vix.
D. Repeat steps A through C for all other input variables.
E. Repeat steps A through D for all other gates to be programmed.
F. Remove VIX from all input variables.

VERIFY INPUT VARIABLE

Unambiguous verification of the logic state programmed for the inputs of each gate requires prior knowledge of its programmed output polarity. Therefore, the output polarity verify procedure must precede input variable verify

1. Set GND (pin 14) to $0 V$, and $V_{C c}(\operatorname{pin} 28)$ to Vccv.
2. Enable all outputs by setting $\overline{\mathrm{CE}}$ (pin 19) to V IL.
3. Disable all input variables by applying $V_{I X}$ to inputs to through l_{15}.
A. Interrogate input variable I_{0} as follows: Lower the input voltage to lo from VIX to $V_{I L}$, and sense the logic state of outputs F0-8.

Raise the input voltage to to from $V_{I L}$ to V_{IH} and sense the logic state of outputs F0-8.

BIPOLAR FIELD PROGRAMMABLE GATE ARRAY (16×9)

$82 S 102$ (0.C.)/82S103 (T.S.)

The state of 10 contained in each gate is determined in accordance with the given truth table. Note that 2 tests are required to uniquely determine the state of the input variable contained in each gate.
B. Disable verified input by returning to to VIX.
C. Repeat steps A and B for all other input variables.
D. Remove $V_{I X}$ from all input variables.

TRUTH TABLE FOR INPUT VERIFICATION

$\mathbf{I}_{\mathbf{0}}$	$\mathbf{F p}$	$\mathbf{F} \dot{\mathbf{p}}$	INPUT VARIABLE STATE	LINK FUSED
0	1	0	$\overline{T_{0}}$	j
1	0	1	10	k
0	0	1		Both
1	1	0	Don't care	
0	1	0		Neither
1	1	0	$(10),\left(\overline{I_{0}}\right)$	
0	0	1		

PROGRAMMING SYSTEMS SPECIFICATIONS $1 \quad T_{A}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		Min	Typ	Max			
Vccp Vccv	Vcc supply Program² Verify		$I C C P=350 \pm 50 \mathrm{~mA},$ Transient or steady state	$\begin{gathered} 8.5 \\ 4.75 \end{gathered}$	$\begin{gathered} 8.75 \\ 5.0 \end{gathered}$	$\begin{gathered} 9.0 \\ 5.25 \end{gathered}$	V
ICCP Vopf Iopf	Icc limit (program) Forced output voltage ${ }^{3}$ (program) Output current limit (program)	$V_{C C P}=+8.75 \pm .25 \mathrm{~V}$, Transient or steady state $\mathrm{IOP}=150 \pm 25 \mathrm{~mA},$ Transient or steady state $V_{O P}=+17 \pm 1 \mathrm{~V} .$ Transient or steady state	$\begin{aligned} & 400 \\ & 16.0 \\ & 125 \end{aligned}$	$\begin{aligned} & 450 \\ & 17.0 \\ & 150 \end{aligned}$	$\begin{aligned} & 500 \\ & 18.0 \\ & 175 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$	
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Input voltage High Low		$\begin{gathered} 2.4 \\ 0 \end{gathered}$	0.4	$\begin{aligned} & 5.5 \\ & 0.8 \end{aligned}$	V	
$\begin{aligned} & \mathrm{IIH} \\ & \mathrm{IIL} \\ & \hline \end{aligned}$	```Input current High Low```	$\begin{gathered} \mathrm{V}_{\mathrm{IH}}=+5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ \hline \end{gathered}$			$\begin{array}{r} 50 \\ -500 \\ \hline \end{array}$	$\mu \mathrm{A}$	
$\begin{aligned} & V_{1 x} \\ & l_{1 \times 1} \\ & l_{1 \times 2} \end{aligned}$	$\overline{C E}$ program enable level Input variables current $\overline{C E}$ input current	$\begin{aligned} & V_{I X}=+10 V \\ & V_{I X}=+10 V \end{aligned}$	9.5	10	$\begin{gathered} 10.5 \\ 5.0 \\ 10.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$	
	Output pulse rise time $\overline{\mathrm{CE}}$ programming pulse width Pulse sequence delay Programming time Programming duty cycle Fusing attempts per link Verify threshold ${ }^{4}$		$\begin{aligned} & 10 \\ & 0.3 \\ & 10 \end{aligned}$ 1.4	$\begin{aligned} & 0.4 \\ & 0.6 \\ & 1.5 \end{aligned}$	$\begin{gathered} 50 \\ 0.5 \\ \\ 100 \\ 2 \\ 1.6 \end{gathered}$	$\mu \mathrm{S}$ ms $\mu \mathrm{S}$ ms \% cycle V	

NOTES

1. These are specifications which a Programming System must satisfy in order to be qualified by Signetics
2. Bypass VCC to GND with a $0.01 \mu \mathrm{~F}$ capacitor to reduce voltage spikes.
3. Care should be taken to ensure that the voltage is maintained during the entire fusing cycle. The ecommended supply is a constant current source clamped at the specified voltage limit.
4. V_{S} is the sensing threshold of a gate output voltage for a programmed link. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.

PROGRAMMING

In a virgin device all $\mathrm{Ni}-\mathrm{Cr}$ links are intact. The initial programmed state of each gate is shown in the Typical Gate illustration.
To program inputs and outputs of each gate for implementing the desired logic function, fuse Ni-Cr links as indicated in the fuse link diagrams.

TYPICAL GATE

OUTPUT ACTIVE HIGH = FUSE LINK S

INPUT ITm = FUSE LINK J

INPUT Im = FUSE LINK K

INPUT DON'T CARE = FUSE BOTH LINKS J, K

BITULAR FIELD PROGRAMMABLE GATE ARRAY (16X9) 825102 (0.C.)/82S103 (I.S.)

FPGA MANUAL FUSER

16X9 FPGA PROGRAM TABLE

CUSTOMER NAME	THIS PORTION TO BE COMPLETED BY SIGNETICS
PIIRCHASE ORDER \#	$C F(X X X X)$
SIGNETICS DEVICE\#	CUSTOMER SYMBOLIZED PART \# ___
TOTAL NUMBER OF PARTS	DATE RECEIVED _
PROGRAM TABLE \#	COMMENTS

$F_{0}=$
$F_{1}=$
$F_{2}=$
$F_{3}=$
$F_{4}=$
$F_{5}=$
$F_{6}=$
$F_{7}=$
$F_{8}=$

	INPUT VARIABLE															
POLARITY	I_{0}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}	I_{8}	I_{9}	IA	IB	IC	ID	IE	If
F_{0}	0	1	2.	3	4	5	6	7	8	3	10	11	12	13	14	15
F_{1}	16	17	18	13	20)	21	22	23	24	25	26	$2 ?$	28	29	30	31
F_{2}	32	33	34	35	$3{ }^{3}$	37	38	39	40	41	42	43	44	45	46	4 ?
\boldsymbol{F}_{3}	48	49	50	51	52.	53	54	5.5	56	57	58	59	61	61	fi2	23
F_{4}	64	65	66	$6 i$	68	69	70	71	72	73	74	is	76	7i	\%	9
F_{5}	80	81	82	83	84	85	86	87	88	89	90	91	92	9.3	94	9%
F_{6}	96.	97	96	99	100	101	102	103	104	10.5	106	107	102	109	110	111
\mathbf{F}_{7}	11%	113	114	115	116	117	114	119	120	121	122	123	12.4	125	126	127
F_{8}	128	123	130	137	139	133	134	195	136	137	138	1:99	140	141	142	143
$\begin{aligned} & \text { Active-high }=\mathrm{H} \\ & \text { Active-low }=\mathrm{L} \end{aligned}$	$\begin{aligned} & =H \\ & =L \\ & \text { n't Care } \end{aligned}$															

The number in each cell in the table denotes its address for programmers with a decimal address display.

[^0]: For each of the 9 outputs, either the function Fp (active high) or Fp (active low) is available, but not both. The required function polarity is user programmable via fuse (S).

