DESCRIPTION

The 8 T10 is a high speed Quad D flip-flop with tri-state outputs for use in bus-organized systems. The high current sink capability permits up to 20 standard loads to be interconnected on a single bus. The outputs present a high impedance to the bus when disabled (Control Input " 1 ") and active drive when enabled (Control Inputs " 0 ").

All four D-type flip-flops operate from a common clock with data being transferred on the low-to-high transition of the pulse.
A common clear input resets all flip-flops upon application of a logic " 1 " level.
Data will be stored if either one or both inputs to the Input Disable NOR gate is a logic " 1 ".

TRUTH TABLE

D_{n}	N DIS	OUT DIS	0_{n+1}
0	0		
1	0	0	0
x	1	0	1
x	x	1	0_{n}
High Z			

O_{n} refers to the output state before a clock pulse.
$0_{n}+1$ refers to the output state after a clock pulse.

DIGITAL 8000 SERIES TTL/MSI

LOGIC DIAGRAM

$\mathrm{V}_{\mathrm{Cc}}=16$
GND=8

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS	LIMITS				TEST CONDITIONS								NOTES
	MIN.	TYP.	MAX.	UNITS	D_{n}	$\begin{gathered} \text { IN } \\ \text { DIS } 1 \end{gathered}$	IN	$\begin{array}{\|c} \text { OUT } \\ \text { DIS } 1 \end{array}$	$\begin{aligned} & \text { OUT } \\ & \text { DIS } 2 \end{aligned}$	CLEAR	CLOCK	OUTPUT	
"1" Output Voltage	2.4	3.0		V	2.0 V	0.8V	0.8V	0.8V	0.8V	0.8 V	Pulse	-5.2mA	6
"0'0 Output Voltage			0.4	V	0.8V	0.8V	0.8 V	0.8V	0.8 V	0.8 V	Pulse	32 mA	7
Output Leakage Current (High Impedance State)	-40		+40	$\mu \mathrm{A}$		0.8	0.8V	+2.0V	+2.0V	0.8V	Pulse	$\begin{aligned} & +0.4 \mathrm{~V} / \\ & +2.4 \mathrm{~V} \end{aligned}$	
"1" Input Current													
D_{n} Inputs			40	$\mu \mathrm{A}$	4.5V	0.4V	0.4 V	0.4 V	0.4 V	0.4 V			
All Other Inputs			50	$\mu \mathrm{A}$		4.5 V							
" 0 " Input Current													
D_{n} inputs	-. 100		-3.2	mA	0.4 V								
All Other Inputs	-. 100		-2.0	mA		0.4 V	0.4V	0.4 V	0.4V	0.4V	0.4 V		
Input Voltage Rating	+5.5V				10 mA								

$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTICS} \& \multicolumn{4}{|c|}{LIMITS} \& \multicolumn{8}{|c|}{TEST CONDITIONS} \& \multirow[b]{2}{*}{NOTES} \\
\hline \& MIN. \& TYP. \& MAX. \& UNITS \& \(\mathrm{D}_{\mathrm{n}}\) \& \[
\left\lvert\, \begin{gathered}
\text { IN } \\
\text { DIS } 1
\end{gathered}\right.
\] \& IN \& \[
\begin{gathered}
\text { OUT } \\
\text { DIS } 1
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { OUT } \\
\& \text { DIS } 2
\end{aligned}
\] \& CLEAR \& CLOCK \& OUTPUT \& \\
\hline \begin{tabular}{l}
Propagation Delay (ton, toff) Clock to Output
\[
\begin{aligned}
\& C_{L}=30 \mathrm{pf} \\
\& C_{L}=300 p f
\end{aligned}
\] \\
Disable to Output High \(Z\) to Logic 0, \(t_{p Z L}\) \\
State (\(\mathrm{C}_{\mathrm{L}}=300 \mathrm{pf}\)) \\
Logic 0 to High \(Z, t_{p L Z}\) \\
High \(Z\left(C_{L}=300 \mathrm{pf}\right)\) \\
Clear to Output
\[
\begin{aligned}
\& C_{L}=30 \mathrm{pf} \\
\& C_{L}=300 \mathrm{pf}
\end{aligned}
\] \\
Set Up Time, \(t_{\text {setup }}\) \\
Data \\
Input Disable \\
Hold Time, thold Data \\
Reset Pulse Width \\
Clock Frequency \\
Clock Pulse Width \\
Positive \\
Negative \\
Power/Current Consumption Output Short Circuit Current
\end{tabular} \& +5

16
35

-40 \& | 18 |
| :--- |
| 20 |
| 20 |
| 15 |
| 21 |
| -1 |
| -6 |
| -1 |
| 50 |
| 8 8 | \& 25

35
30
30
22
30
0
+5

12
12
$619 /$
118
-120 \& ns
MHz
ns
ns
$\mathrm{mW} / \mathrm{mA}$

mA \& $$
\begin{aligned}
& 0.4 \mathrm{~V} \\
& 4.5 \mathrm{~V}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0.4 \mathrm{~V} \\
& 0.4 \mathrm{~V}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.4 \mathrm{~V} \\
& 0.4 \mathrm{~V}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.5 \mathrm{~V} \\
& 0.4 \mathrm{~V}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.4 \mathrm{~V} \\
& 0.4 \mathrm{~V}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.4 \mathrm{~V} \\
& 0.4 \mathrm{~V}
\end{aligned}
$$

\] \& 4.5 V \& 0.0V \& \[

$$
\begin{gathered}
12 \\
12 \\
10,12 \\
11,12 \\
12 \\
12 \\
12 \\
12 \\
12 \\
12 \\
12 \\
12 \\
12 \\
8 \\
8,9
\end{gathered}
$$
\]

\hline
\end{tabular}

NOTES:

1. All voltage and cepacitance measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current flow is defined as into the terminal referenced.
4. Posltive logic definition: "UP" Level $=" 1 "$, "DOWN" Level $=$ " 0 ".
5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings
should the isolation diodes become forward blased.
6. Output source current is supplied through a resistor to ground.
7. Output sink current is supplied through a resistor to V_{CC} -
8. $V_{C C}=5.25 \mathrm{~V}$.
9. Not more than one output should be shorted at a time.
10. Measured to 1.5 V level of output waveform.
11. Measured to 10% level of output waveform.
12. Refer to AC Test Circuits.

AC TEST CIRCUITS AND WAVEFORMS

PROPAGATION DELAY $t_{\text {on }}, t_{\text {off }}$ (CLOCK TO OUTPUT) DATA SETUP TIME, $\mathbf{t}_{\text {setup }}$

FIGURE 1

AC TEST CIRCUITS AND WAVEFORMS (Cont'd)

PROPAGATION DELAY (CLEAR TO OUTPUT)

FIGURE 2
PROPAGATION DELAY (DATA HOLD TIME)

FIGURE 3
PROPAGATION DELAY (DISABLE TO OUTPUT)

TYPICAL APPLICATIONS

MULTIPLEXING EIGHT LED DISPLAYS

