DIEITAL 8000 SERIES TTL/MSI

FEATURES

- BUILT-IN INPUT THRESHOLD HYSTERESIS*
- HIGH SPEED: TON $=$ TOFF $=20 \mathrm{~ns}$ (TYPICAL)
- EACH CHANNEL CAN BE STROBED INDEPENDENTLY
- FANOUT OF TEN (10) WITH STANDARD TTL INTEGRATED CIRCUITS
- INPUT GATING IS INCLUDED WITH EACH LINE RECEIVER FOR INCREASED APPLICATION FLEXIBILITY
- OPERATION FROM A SINGLE +5V POWER SUPPLY
- Hysteresis is defined as the difference between the input thresholds for the " 1 " and " 0 " output states. Hysteresis is specified at 0.4 V typically and 0.2 V minimum over the operating temperature range.

LOGIC DIAGRAM WITH PIN LAYOUT

$\mathrm{VCC}=(16)$
GND $=(8)$
$(\quad)=$ Denotes Pin Numbers

ELECTRICAL CHARACTERISTICS ${ }^{(} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ TO $+75^{\circ} \mathrm{C}$)

CHARACTERISTICS	LIMITS				TEST CONDITIONS					NOTES
	MIN.	TYP.	MAX.	UNITS	R	S	A	B	OUTPUTS	
" 1 " Output Voltage	$\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.4 \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{array}{r} 1.70 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 0.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { OV } \\ & \text { OV } \end{aligned}$	$\begin{aligned} & \text { OV } \\ & \text { OV } \end{aligned}$	$\begin{aligned} & -800 \mu \mathrm{~A} \\ & -800 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$
"0' Output Voltage		$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{array}{r} 0.70 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$	$\begin{array}{r} 1.7 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$	$\begin{gathered} \mathrm{OV} \\ 1.7 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { OV } \\ & 1.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~mA} \\ & 16 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
$" 0 "$ Input Current S_{n} A_{n} B_{n}	$\begin{aligned} & -0.1 \\ & -0.1 \\ & -0.1 \end{aligned}$		$\begin{aligned} & -1.6 \\ & -1.6 \\ & -1.6 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { OV } \\ & \text { OV } \end{aligned}$	0.4V	0.4V	0.4V		
"1" Input Current			$\begin{gathered} 0.17 \\ 5.0 \\ 5.0 \\ 40 \\ 40 \\ 40 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3.11 \mathrm{~V} \\ & 7.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \\ & 3.11 \mathrm{~V} \end{aligned}$	4.5 V	$\begin{gathered} 4.5 \mathrm{~V} \\ \mathrm{OV} \end{gathered}$	$\begin{gathered} \mathrm{OV} \\ 4.5 \mathrm{~V} \end{gathered}$		9

ELECTRICAL CHARACTERISTICS (AT $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{v}$ AND $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

CHARACTERISTICS	LIMITS				TEST CONDITIONS					NOTES
	MIN.	TYP.	MAX.	UNITS	- R	S	A	B	OUTPUTS	
Turn-On Delay, ton		20	30	nS						13
Turn-Off Delay, $\mathrm{t}_{\text {off }}$		20	30	nS						13
Hysteresis	0.2	0.4		V		4.5 V	OV	OV		11, 12
Power/Current Consumption		$\begin{array}{r} \hline 315 \\ 60 \\ \hline \end{array}$	$\begin{array}{r} 380 \\ 72 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$						14
Input Voltage Rating S A B	$\begin{aligned} & 5.5 \\ & 5.5 \\ & 5.5 \end{aligned}$			$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	$\begin{gathered} 3.11 \mathrm{~V} \\ 0 \mathrm{~V} \\ \mathrm{OV} \end{gathered}$	10 mA OV OV	OV 10 mA OV	$\begin{gathered} 0 \mathrm{~V} \\ 0 \mathrm{~V} \\ 10 \mathrm{~mA} \end{gathered}$		
Output Short Circuit Current	-50		-100	mA	3.11 V	OV	OV	OV		10, 14
Input Voltage Rating S A B			$\begin{aligned} & -1.5 \\ & -1.5 \\ & -1.5 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$		-12mA	-12mA	-12mA		

NOTES:

1. All voltage measurments are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current is defined as into the terminal referenced.
4. Positive logic definition: "UP" Leval $={ }^{\prime \prime} 1 "$."DOWN" Level $=" 0 "$.
5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
6. Manufacturer reserves the right to make design and process changes and improvements.
7. Output source current is applied through a resistor to ground.
8. Output sink current is supplied through a resistor to $V_{\text {cc }}$.
9. $V_{C C}=0.00 \mathrm{~V}$
10. Not more than one output should be shorted at a time.
11. Hysteresis is defined as the voltage difference between the R input level at which the output begins to go from " O " to " 1 " state and the level at which the output begins to go from " 1 " to " 0 ".
12. See Hysteresis test circuit.
13. Refer to $A C$ test circuits.
14. $V_{C C}=5.25 \mathrm{~V}$.

3-166

CIRCUIT SCHEMATIC

AC TEST CIRCUIT AND WAVEFORMS

HYSTERESIS TEST CIRCUIT

Verlfy In each of three (3) positions of S_{1} (Figure 1) that
the following occurs per Figure 2 . the following occurs per Figure 2.

1. $V_{1} \times$ and V_{2} must be between 0.7 V minimum and 1.7 maximum.
2. Hysteresis $=V_{1} \cdot V_{2}$

TYPICAL APPLICATION

