Radiation Hardened 4-Bit Synchronous Counter

Features

- Devices QML Qualified in Accordance with MIL-PRF-38535
- Detailed Electrical and Screening Requirements are Contained in SMD\# 5962-96706 and Intersil' QM Plan
- 1.25 Micron Radiation Hardened SOS CMOS
- Total Dose
>300K RAD (Si)
- Single Event Upset (SEU) Immunity: $<1 \times 10^{-10}$ Errors/Bit/Day (Typ)
- SEU LET Threshold . > 100 MEV-cm²/mg
- Dose Rate Upset >10 ${ }^{11}$ RAD (Si)/s, 20ns Pulse
- Dose Rate Survivability $>10^{12}$ RAD (Si)/s, 20ns Pulse
- Latch-Up Free Under Any Conditions
- Military Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Significant Power Reduction Compared to ALSTTL Logic
- DC Operating Voltage Range
4.5V to 5.5 V
- Input Logic Levels
- VIL = 30\% of VCC Max
- VIH = 70\% of VCC Min
- Input Current $\leq 1 \mu \mathrm{~A}$ at VOL, VOH
- Fast Propagation Delay 21ns (Max), 14ns (Typ)

Description

The Intersil ACS161MS is a Radiation Hardened 4-Bit Binary Synchronous Counter. The $\overline{M R}$ is an active low master reset. $\overline{\mathrm{SPE}}$ is an active low Synchronous Parallel Enable which disables counting and allows data at the preset inputs ($\mathrm{PO}-\mathrm{P} 3$) to load the counter. CP is the positive edge clock. TC is the terminal count or carry output. Both TE and PE must be high for counting to occur, but are irrelevant to loading. TE low will keep TC low.

The ACS161MS utilizes advanced CMOS/SOS technology to achieve high-speed operation. This device is a member of a radiation hardened, high-speed, CMOS/SOS Logic family.

The ACS161MS is supplied in a 16 lead Ceramic Flatpack (K suffix) or a Ceramic Dual-In-Line Package (D suffix).

Pinouts

16 PIN CERAMIC DUAL-IN-LINE MIL-STD-1835, DESIGNATOR CDIP2-T16, LEAD FINISH C TOP VIEW

16 PIN CERAMIC FLATPACK MIL-STD-1835, DESIGNATOR CDFP4-F16, LEAD FINISH C TOP VIEW

Ordering Information

PART NUMBER	TEMPERATURE RANGE	SCREENING LEVEL	PACKAGE
5962F9670601VEC	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MIL-PRF-38535 Class V	16 Lead SBDIP
$5962 F 9670601 \mathrm{VXC}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MIL-PRF-38535 Class V	16 Lead Ceramic Flatpack
ACS161D/Sample	$25^{\circ} \mathrm{C}$	Sample	16 Lead SBDIP
ACS161K/Sample	$25^{\circ} \mathrm{C}$	Sample	16 Lead Ceramic Flatpack
ACS161HMSR	$25^{\circ} \mathrm{C}$	Die	Die

Functional Diagram

$\mathrm{H}=$ High Steady State, $\mathrm{L}=$ Low Steady State, $\mathrm{h}=$ High voltage level one setup time prior to the Low-to-High clock transition, $\mathrm{I}=$ Low voltage level one setup time prior to the Low-to-High clock transition, $\mathrm{X}=$ Don't Care, $\mathrm{q}=$ Lower case letters indicate the state of the referenced output prior to the Low-to-High clock transition, $\Gamma=$ Low-to-High Transition.
NOTES:

1. The TC output is High when TE is High and the counter is at Terminal Count (HHHH).
2. The High-to-Low transition of PE or TE should only occur while ZCP is High for conventional operation.
3. The Low-to-High transition of SPE should only occur while CP is High for conventional operation.
4. The TC output is High when TE is High and the counter is at Terminal Count (HHHH).

Die Characteristics

DIE DIMENSIONS:
88 mils $\times 88$ mils
$2240 \mathrm{~mm} \times 2240 \mathrm{~mm}$

METALLIZATION:
Type: AISi
Metal 1 Thickness: $7.125 \mathrm{k} \AA \pm 1.125 \mathrm{k} \AA$
Metal 2 Thickness: $9 k \AA \pm 1 k \AA$

GLASSIVATION:

Type: SiO2
Thickness: $8 \mathrm{k} \AA ̊ \pm 1 \mathrm{k} \AA$

WORST CASE CURRENT DENSITY:
$<2.0 \times 105 \mathrm{~A} / \mathrm{cm} 2$

BOND PAD SIZE:

$110 \mathrm{~mm} \times 110 \mathrm{~mm}$
4.3 mils $\times 4.3$ mils

Metallization Mask Layout

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time withou notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Sales Office Headquarters

NORTH AMERICA
Intersil Corporation 7585 Irvine Center Drive Suite 100
Irvine, CA 92618
TEL: (949) 341-7000
FAX: (949) 341-7123

EUROPE

Intersil Europe Sarl Ave. William Graisse, 3 1006 Lausanne Switzerland
TEL: +41 216140560
FAX: +41 216140579

ASIA

Intersil Corporation
Unit 1804 18/F Guangdong Water Building 83 Austin Road
TST, Kowloon Hong Kong
TEL: +852 27236339
FAX: +852 27301433

