Complete, High Speed 16-Bit A/D Converters AD1376/AD1377

FEATURES

Complete 16-Bit Converters with Reference and Clock $\pm 0.003 \%$ Maximum Nonlinearity
 No Missing Codes to 14 Bits over Temperature Fast Conversion
 $17 \mu \mathrm{~s}$ to 16 Bits (AD1376)
 10μ s to 16 Bits (AD1377)
 Short Cycle Capability
 Adjustable Clock Rate
 Parallel and Serial Outputs
 Low Power: 645 mW Typical (AD1376)
 585 mW Typical (AD1377)
 Industry Standard Pinout

PRODUCT DESCRIPTION

The AD 1376/AD 1377 are high resolution, 16-bit analog-todigital converters with internal reference, clock and laser-trimmed thin-film applications resistors. They are packaged in a compact 32-pin, ceramic scam sealed (hermetic) dual-in-line packages (DIP). Thin-film scaling resistors provide bipolar input ranges of $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$ and unipolar input ranges of 0 V to $+5 \mathrm{~V}, 0 \mathrm{~V}$ to +10 V and 0 V to +20 V .
Digital output data is provided in parallel and serial form with corresponding clock and status outputs. All digital inputs and outputs are TT L compatible.

APPLICATIONS

The AD 1376/AD 1377 are excellent for use in high resolution applications requiring moderate speed and high accuracy or
stability over commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ temperature ranges (for extended temperature ranges, the pin compatible AD 1378 is recommended.) Typical applications include medical and analytic instrumentation, precision measurement for industrial robotics, automatic test equipment (ATE), and multichannel data acquisition systems, servo control systems or anywhere wide dynamic range is required A proprietary monolithic DAC and laser-trimmed thin-film resistors guarantee a maximum nonlinearity of $\pm 0003 \%$ ($1 / 2$ LSB $_{14 .}$) The converters may be short cycled to achieve faster conversion times - 15μ s to 14 bits for the AD 1376, or 8μ s to 14 bits for the AD 1377.

PRODUCT HIGHLIGHTS

1. The AD 1376/AD 1377 provides 16 -bit resolution with a maximum linearity error of $\pm 0.003 \%\left(1 / 2 \mathrm{LSB}_{14}\right)$ at $+25^{\circ} \mathrm{C}$.
2. AD 1376 conversion time is $14 \mu \mathrm{~s}$ (typical) short cycled to 14 bits, and 16μ sto 16 bits.
3. AD 1377 conversion time is $8 \mu \mathrm{~s}$ (typical) short cycled to 14 bits, and $9 \mu \mathrm{~s}$ to 16 bits.
4. T wo binary codes are available on the digital output. They are CSB (C omplementary Straight Binary) for unipolar input voltage ranges and COB (Complementary Offset Binary) for bipolar input ranges. C omplementary T wos Complement (CTC) coding may be obtained by inverting Pin 1 (MSB).
5. T he AD 1376 and AD 1377 include internal reference and clock, with external clock rate adjust pin, and serial and parallel digital outputs.

FUNCTIONAL BLOCK DIAGRAM

REV. B

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703

Model	AD 1376J /AD 1377J D	AD1376KD/AD 137/KD	Units
RESOLUTION	16 (max)	16 (max)	Bits
```ANALOG INPUTS Voltage Ranges Bipolar U nipolar Impedance (D irect Input) 0 V to +5 V, \pm2.5 V 0 V to +10 V , \pm5.0 V 0 V to +20 V, }\pm10\textrm{V```	$\begin{aligned} & \pm 2.5, \pm 5, \pm 10 \\ & 0 \text { to }+5,0 \text { to }+10,0 \text { to }+20 \\ & 1.88 \\ & 3.75 \\ & 7.50 \end{aligned}$	$\begin{aligned} & \pm 2.5, \pm 5, \pm 10 \\ & 0 \text { to }+5,0 \text { to }+10,0 \text { to }+20 \\ & 1.88 \\ & 3.75 \\ & 7.50 \end{aligned}$	Volts Volts   k $\Omega$   k $\Omega$   $\mathrm{k} \Omega$
DIGITAL INPUTS ${ }^{1}$ Convert command Logic Loading	Positive Pulse 50 ns Wide 1	T railing Edge Initiates C onversion 1	LS TTL Load
TRANSFER CHARACTERISTICS ${ }^{2}$			
ACCURACY   G ain Error   Offset Error   U nipolar   Bipolar   Linearity Error (max) Inherent Quantization Error D ifferential Linearity Error	$\begin{aligned} & \pm 0.05^{3}( \pm 0.2 \text { max }) \\ & \pm 0.05^{3}( \pm 0.1 \mathrm{max}) \\ & \pm 0.05^{3}( \pm 0.2 \mathrm{max}) \\ & \pm 0.006 \\ & \pm 1 / 2 \\ & \pm 0.003 \end{aligned}$	$\begin{aligned} & \pm 0.05^{3}( \pm 0.2 \mathrm{max}) \\ & \pm 0.05^{3}( \pm 0.1 \mathrm{max}) \\ & \pm 0.05^{3}( \pm 0.2 \mathrm{max}) \\ & \pm 0.003 \\ & \pm 1 / 2 \\ & \pm 0.003 \end{aligned}$	\%   $\%$ of $F$ SR 4   \% of FSR   \% of FSR   LSB   \% of FSR
$\begin{aligned} & \text { POWER SUPPLY SENSITIVITY } \\ & \pm 15 \mathrm{~V} \mathrm{dc}( \pm 0.75 \mathrm{~V}) \\ & +5 \mathrm{Vdc}( \pm 0.25 \mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0015 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.0015 \\ & 0.001 \end{aligned}$	$\%$ of FSR/\% $\Delta V_{s}$   $\%$ of FSR/\% $\Delta V_{S}$
$\begin{aligned} & \hline \text { CON VERSION TIME } \\ & 12 \text { Bits (AD 1376) } \\ & 14 \text { Bits (AD 1376) } \\ & 16 \text { Bits (AD 1376) } \\ & 14 \text { Bits (AD 1377) } \\ & 16 \text { Bits (AD 1377) } \end{aligned}$	$\begin{aligned} & 11.5 \text { (13 max) } \\ & 13.5 \text { (15 max) } \\ & 15.5 \text { (17 max) } \\ & 8.75 \text { max } \\ & 10 \text { max } \end{aligned}$	$\begin{aligned} & 11.5 \text { (13 max) } \\ & 13.5 \text { (15 max) } \\ & 15.5 \text { (17 max) } \\ & 8.75 \text { max } \\ & 10 \text { max } \end{aligned}$	$\begin{aligned} & \mu S \\ & \mu S \\ & \mu S \\ & \mu S \\ & \mu S \end{aligned}$
POWER SUPPLY REQUIREMENTS   Rated Voltage, A nalog   Rated Voltage, D igital   AD 1376 Power Consumption   +15 V Supply D rain   -15 V Supply D rain   +5 V Supply D rain   AD 1377 Power C onsumption   +15 V Supply D rain   -15 V Supply D rain   +5 V Supply D rain	$\begin{aligned} & \pm 15, \pm 0.5(\max ) \\ & +5, \pm 0.25(\max ) \\ & 645(850 \mathrm{max}) \\ & +16 \\ & -21 \\ & +18 \\ & 600(800 \mathrm{max}) \\ & +10 \\ & -23 \\ & +18 \end{aligned}$	$\begin{aligned} & \pm 15, \pm 0.5(\max ) \\ & +5, \pm 0.25(\max ) \\ & 645(850 \mathrm{max}) \\ & +16 \\ & -21 \\ & +18 \\ & 600 \text { (800 max) } \\ & +10 \\ & -23 \\ & +18 \end{aligned}$	V dc   V dc   mW   mA   mA   mA   mW   mA   mA   mA
WARM-UP TIME	1	1	minutes
DRIFT ${ }^{6}$   Gain   Offset   U nipolar   Bipolar   Linearity   Guaranteed No M issing Code Temperature Range	$\begin{aligned} & \pm 15 \text { (max) } \\ & \pm 2 \text { ( } \pm 4 \max ) \\ & \pm 10 \text { (max) } \\ & \pm 2 \text { ( } \pm 3 \text { max }) \\ & 0 \text { to } 70 \text { (13 Bits) } \end{aligned}$	$\begin{aligned} & \pm 5 \text { ( } \pm 15 \mathrm{max}) \\ & \pm 2 \text { ( } \pm 4 \mathrm{max}) \\ & \pm 3 \text { ( } \pm 10 \mathrm{max}) \\ & \pm 0.3 \text { ( } \pm 2 \mathrm{max}) \\ & 0 \text { to } 70 \text { (14 Bits) } \end{aligned}$	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
DIGITAL OUTPUT ${ }^{1}$   (All Codes Complementary)   Parallel \& Serial Output Codes ${ }^{7}$   Unipolar   Bipolar   Output Drive	$\begin{aligned} & \text { CSB } \\ & \text { COB, CTC } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { CSB } \\ & \text { COB, CTC } \\ & 5 \end{aligned}$	LSTTL Loads



NOTES
${ }^{1}$ Logic " 0 " $=0.8 \mathrm{~V}$, max. Logic " 1 " $=2.0 \mathrm{~V}$, min for inputs. For digital outputs Logic " 0 " $=+0.4 \mathrm{~V}$ max. Logic " 1 " $=2.4 \mathrm{~V}$ min.
${ }^{2} \mathrm{~T}$ ested on $\pm 10 \mathrm{~V}$ and 0 V to +10 V ranges.
${ }^{3}$ Adjustable to zero.
${ }^{4}$ F ull-Scale Range.
${ }^{5}$ Guaranteed but not $100 \%$ production tested.
${ }^{6}$ C onversion time may be shortened with "Short Cycle" set for lower resolution.
${ }^{7}$ CSB-C omplementary Straight Binary. COB-C omplementary Offset Binary. CTC-C omplementary T wos C omplement.
${ }^{8}$ CTC coding obtained by inverting M SB (Pin 1).
${ }^{9}$ With Pin 23, clock rate controls tied to digital ground.
Specifications subject to change without notice.

## ABSOLUTE MAXIMUM RATINGS*

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 18$ V
L ogic Supply V oltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Analog Inputs (Pins 24 and 25) . . . . . . . . . . . . . . . . . . . $\pm 25$ V
Analog Ground-to-D igital Ground . . . . . . . . . . . . . . $\pm 0.3 \mathrm{~V}$
Digital Inputs ....................... . . 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . $+175^{\circ} \mathrm{C}$
Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $+15^{\circ} \mathrm{C}$
Lead Temperature (10 seconds) . . . . . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$
*Absolute maximum ratings are limiting values to be applied individually, and beyond which the service ability of the circuit may be impaired. Functional operability is not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability.

## ORDERING GUIDE

Model	Temperature   Range	Maximum   Linearity   Error	Conversion   Time   (16 Bits)	Package   Option*
AD 1376JD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 0.006 \%$	$17 \mu \mathrm{~S}$	D H-32E
AD 1376K D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 0.003 \%$	$17 \mu \mathrm{~S}$	D H-32E
AD 1377JD	$0^{\circ} \mathrm{C}$ to $-70^{\circ} \mathrm{C}$	$\pm 0.006 \%$	$10 \mu \mathrm{~S}$	D H-32E
AD 1377K D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 0.003 \%$	$10 \mu \mathrm{~S}$	DH-32E

*DH-32E = Ceramic DIP.


Figure 1. Linearity Error vs. Temperature


Figure 2. AD1376 Nonlinearity vs. Conversion Time


Figure 3. Gain Drift Error vs. Temperature

## AD1376/AD1371

## DESCRIPTION OF OPERATION

On receipt of a CONVERT START command, the AD 1376/ AD 1377 converts the voltage at its analog input into an equivalent 16-bit binary number. T his conversion is accomplished as follows: the 16 -bit successive-approximation register (SAR) has its 16 -bit outputs connected both to the device bit output pins and to the corresponding bit inputs of the feedback DAC. The analog input is successively compared to the feedback DAC output, one hit at a time (M SB first, LSB last). The decision to keep or reject each bit is then made at the completion of each bit comparison period, depending on the state of the comparator at that time.

## GAIN ADJUSTMENT

The gain adjust circuit consists of a $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ potentiometer connected across $\pm \mathrm{V}_{\mathrm{S}}$ with its slider connected through a $300 \mathrm{k} \Omega$ resistor to the gain adjust Pin 29 as shown in Figure 4.
If no external trim adjustment is desired, Pin 27 (offset adj) and Pin 29 (gain adj) may be left open.


Figure 4. Gain Adjustment Circuit ( $\pm 0.2 \%$ FSR)

## OFFSET ADJUSTMENT

The zero adjust circuit consists of a $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ potentiometer connected across $\pm \mathrm{V}_{\mathrm{S}}$ with its slider connected through a 1.8 M $\Omega$ resistor to Comparator Input Pin 27 for all ranges. As shown in Figure 5, the tolerance of this fixed resistor is not critical, and a carbon composition type is generally adequate. $U$ sing a carbon composition resistor having a $-1200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tempco contributes a worst-case offset tempco of $32 \mathrm{LSB}_{14} \times$ $61 \mathrm{ppm} / \mathrm{LSB}_{14} \times 1200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}=2.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FSR , if the OFFSET ADJ potentiometer is set at either end of its adjustment range. Since the maximum offset adjustment required is typically no more than $\pm 16 \mathrm{LSB}_{14}$, use of a carbon composition offset summing resistor typically contributes no more than $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of FSR offset tempco.


Figure 5. Offset Adjustment Circuit ( $\pm 0.3 \%$ FSR) An alternate offset adjust circuit, which contributes negligible offset tempco if metal film resistors (tempco $<100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ) are used, is shown in Figure 6.


Figure 6. Low Tempco Zero Adjustment Circuit

In either adjust circuit, the fixed resistor connected to Pin 27 should be located close to this pin to keep the pin connection runs short. Comparator Input Pin 27 is quite sensitive to external noise pick-up and should be guarded by analog common.

## TIMING

The timing diagram is shown in Figure 7. Receipt of a CON VERT START signal sets the STATUS flag, indicating conversion in progress. This, in turn, removes the inhibit applied to the gated clock, permitting it to run through 17 cycles. All the SAR parallel bits, ST ATUS flip-flops, and the gated clock inhibit signal are initialized on the trailing edge of the CONVERT START signal. At time $t_{0}, B_{1}$ is reset and $B_{2}-B_{16}$ are set unconditionally. At $t_{1}$ the Bit 1 decision is made (keep) and Bit 2 is reset unconditionally. This sequence continues until the Bit 16 (LSB) decision (keep) is made at $\mathrm{t}_{16}$. T he ST AT US flag is reset, indicating that the conversion is complete and that the parallel output data is valid. Resetting the STATUS flag restores the gated clock inhibit signal, forcing the clock output to the low Logic " 0 " state. N ote that the clock remains low until the next conversion.
C orresponding parallel data bits become valid on the same positive-going clock edge.


Figure 7. Timing Diagram (Binary Code O110011101111010)

## DIGITAL OUTPUT DATA

Both parallel and serial data from TTL storage registers is in negative true form (Logic " 1 " $=0 \mathrm{~V}$ and Logic " 0 " $=2.4 \mathrm{~V}$ ). Parallel data output coding is complementary binary for unipolar ranges and complementary offset binary for bipolar ranges. Parallel data becomes valid at least 20 ns before the STATUS flag returns to Logic "0", permitting parallel data transfer to be clocked on the " 1 " to " 0 " transition of the STATUS flag (see Figure 8).


Figure 8. LSB Valid to Status Low

Serial data coding is complementary binary for unipolar input ranges and complementary offset binary for bipolar input ranges. Serial output is by bit (1M 4SB first, LSB last) in N RZ (nonreturn-to-zero) format. Serial and parallel data outputs change state on positive-going clock edges. Serial data is guaranteed valid 120 ns after the rising clock edges, permitting serial data to he clocked directly into a receiving register on the negative-going clock edges as shown in Figure 9. There are 17 negative-going clock edges in the complete 16-bit conversion cycle. T he first negative edge shifts an invalid bit into the register, which is shifted out on the last negative-going clock edge.
All serial data bits will have been correctly transferred and be in the receiving shift register locations shown at the completion of the conversion period.


Figure 9. Clock High to Serial Out Valid

## Short C ycle Input

A Short Cycle Input, Pin 32, permits the timing cycle shown in Figure 7 to be terminated after any number of desired bits has been converted, permitting somewhat shorter conversion times in applications not requiring full 16 -bit resolution. When 10-bit resolution is desired, Pin 32 is connected to Bit 11 output Pin 11. The conversion cycle then terminates and the STATUS flag resets after the Bit 10 decision (timing diagram of F igure 7). Short cycle connections and associated 8-, 10-, 12-, 13-, 14and 15 -bit conversion times are summarized in Table I, for a 1.6 M Hz clock (AD 1377) or 933 kHz (AD 1376).

## INPUT SCALING

The ADC (ADC) inputs should he scaled as close to the maximum input signal range as possible in order to utilize the maximum signal resolution of the A/D converter. C onnect the input signal as shown in T able II. See Figure 10 for circuit details.

Table II. Input Scaling C onnections

Input   Signal   Line	Output   Code	Connect   Pin 26   to Pin	Connect   Pin 24   to	Connect   Input   Signal to
$\pm 10 \mathrm{~V}$	COB	27	Input   Signal	24
$\pm 5 \mathrm{~V}$	COB	27	Open	25
$\pm 2.5 \mathrm{~V}$	COB	27	Pin 27	25
0 V to +5 V	CSB	22	Pin 27	25
0 V to +10 V	C SB	22	Open	25
0 V to +20 V	C SB	22	Input	24
			Signal	

N ote
Pin 27 is extremely sensitive to noise and should be guarded by A nalog Common.


Figure 10. Input Scaling Circuit

Table I. Short Cycle Connections

Resolution		Maximum Conversion Time-us (AD 1377)	Maximum Conversion Time- $\mu \mathrm{S}$ (AD 1378)	Status Flag Reset	Connect Short Cycle Pin 32 to Pin:
16	0.0015	10	17.1	$\mathrm{t}_{16}$	NC (Open)
15	0.003	9.4	16.1	$\mathrm{t}_{15}$	16
14	0.006	8.7	15.0	$\mathrm{t}_{14}$	15
13	0.012	8.1	13.9	$\mathrm{t}_{13}$	14
12	0.024	7.5	12.9	$\mathrm{t}_{12}$	13
10	0.100	6.3	10.7	$\mathrm{t}_{10}$	11
8	0.390	5.0	8.6	$\mathrm{t}_{8}$	9

Table III. Transition Values vs. Calibration Codes

Code Under Test			Low Side Transition Values			OV to +5V
MSB LSB	Range	$\pm 10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm \mathbf{2 . 5 V}$	$\mathbf{0 V}$ to +10 V	
$000 . . . . . . . .000 *$	+Full Scale	$\begin{aligned} & +10 \mathrm{~V} \\ & -3 / 2 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \\ & -3 / 2 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & +2.5 \mathrm{~V} \\ & -3 / 2 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & +10 \mathrm{~V} \\ & -3 / 2 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \\ & -3 / 2 \mathrm{LSB} \end{aligned}$
011........ 111	M id Scale	0-1/2 LSB	0-1/2 LSB	0-1/2 LSB	+5 V-1/2 LSB	+2.5 V-1/2 LSB
111........ 110	-Full Scale	$\begin{aligned} & -10 \mathrm{~V} \\ & +1 / 2 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & -5 \mathrm{~V} \\ & +1 / 2 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & -2.5 \mathrm{~V} \\ & +1 / 2 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & +1 / 2 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & +1 / 2 \mathrm{LSB} \end{aligned}$

*Voltages given are the nominal value for T ransition to the code specified.
N ote: F or LSB value for range and resolution used, see T able IV.
Table IV. Input Voltage Range and LSB Values

Analog Input Voltage Range	$\pm 10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 2.5 \mathrm{~V}$	0 V to +10 V	0 V to +5 V	
Code D esignation		$\begin{aligned} & \text { COB* } \\ & \text { or CTC** } \end{aligned}$	$\begin{aligned} & \text { COB* } \\ & \text { or CTC** } \end{aligned}$	$\begin{aligned} & \text { COB* } \\ & \text { or CTC** } \end{aligned}$	CSB***	CSB***
One Least Significant Bit (LSB)	$\frac{\mathrm{FSR}}{2^{n}}$	$\frac{20 \mathrm{~V}}{2^{n}}$	$\frac{10 \mathrm{~V}}{2^{\mathrm{n}}}$	$\frac{5 \mathrm{~V}}{2^{n}}$	$\frac{10 \mathrm{~V}}{2^{n}}$	$\frac{5 \mathrm{~V}}{2^{n}}$
	$\begin{aligned} & \mathrm{n}=8 \\ & \mathrm{n}=10 \\ & \mathrm{n}=12 \\ & \mathrm{n}=13 \\ & \mathrm{n}=14 \\ & \mathrm{n}=15 \end{aligned}$	$\begin{aligned} & 78.13 \mathrm{mV} \\ & 19.53 \mathrm{mV} \\ & 4.88 \mathrm{mV} \\ & 2.44 \mathrm{mV} \\ & 1.22 \mathrm{mV} \\ & 0.61 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 39.06 \mathrm{mV} \\ & 9.77 \mathrm{mV} \\ & 2.44 \mathrm{mV} \\ & 1.22 \mathrm{mV} \\ & 0.61 \mathrm{mV} \\ & 0.31 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 19.53 \mathrm{mV} \\ & 4.88 \mathrm{mV} \\ & 1.22 \mathrm{mV} \\ & 0.61 \mathrm{mV} \\ & 0.31 \mathrm{mV} \\ & 0.15 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 39.06 \mathrm{mV} \\ & 9.77 \mathrm{mV} \\ & 2.44 \mathrm{mV} \\ & 1.22 \mathrm{mV} \\ & 0.61 \mathrm{mV} \\ & 0.31 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 19.53 \mathrm{mV} \\ & 4.88 \mathrm{mV} \\ & 1.22 \mathrm{mV} \\ & 0.61 \mathrm{mV} \\ & 0.31 \mathrm{mV} \\ & 0.15 \mathrm{mV} \end{aligned}$
```NOTES *COB = Complementary Offset Binary. **CTC = C omplementary T wos C omplementary-achieved by using an inverter to complement the most significant bit to product (\overline{MSB}). ***CSB = Complementary Straight Binary.```						

CALIBRATION

(14-Bit Resolution Examples)

External ZERO ADJ and GAIN ADJ potentiometers, connected as shown in Figures 4 and 5, are used for device calibration. To prevent interaction of these two adjustments, Zero is always adjusted first and then G ain. Zero is adjusted with the analog input near the most negative end of the analog range (0 for unipolar and -FS for bipolar input ranges). Gain is adjusted with the analog input near the most positive end of the analog range.

0 V to +10 V Range

Set analog input to $+1 \mathrm{LSB}_{14}=0.00061 \mathrm{~V}$. Adjust Zero for digital output $=11111111111110$.
Zero is now calibrated. Set analog input to $+\mathrm{FSR}-2$ LSB $=$ +9.99878 V. A djust G ain for 00000000000001 digital output code; full scale (Gain) is now calibrated. H alf scale calibration check: set analog input to +5.00000 V ; digital output code should be 01111111111111.

$\mathbf{- 1 0} \mathrm{V}$ to $+\mathbf{1 0} \mathrm{V}$ Range

Set analog input to 9.99878 V; adjust zero for 1111111111110 digital output (complementary offset binary) code. Set analog
input to 9.99756 V ; adjust G ain for 00000000000001 digital output (complementary offset binary) code. H alf scale calibration check set analog input to 0.00000 V ; digital output (complementary offset binary) code should be 01111111111111.

Figure 11. Analog and Power Connections for Unipolar 0 V to +10 V Input Range

Figure 12. Analog and Power Connections for Bipolar +10 V to +10 V Input Range

Other Ranges

Representative digital coding for 0 V to +10 V and -10 V to +10 V ranges is given above. Coding relationships and calibration points for 0 V to $+5 \mathrm{~V},-2.5 \mathrm{~V}$ to +2.5 V and -5 V to +5 V ranges can be found by halving proportionally the corresponding code equivalents listed for the 0 V to +10 V and -10 V to +10 V ranges, respectively, as indicated in T able III.
Zero and full-scale calibration can be accomplished to a precision of approximately $\pm 1 / 2$ LSB using the static adjustment procedure described above. By summing a small sine or triangular wave voltage with the signal applied to the analog input, the output can be cycled through each of the calibration codes of interest to more accurately determine the center (or end points) of each discrete quantization level. A detailed description of this dynamic calibration technique is presented in A nalog-D igital C onversion H andbook, edited by D. H. Sheingold, Prentice H all, Inc., 1986.

GROUNDING, DECOUPLING AND LAYOUT CONSIDERATIONS

M any data-acquisition components have two or more ground pins which are not connected together within the device. These "grounds" are usually referred to as the Logic Power Return, Analog Common (A nalog Power Return) and Analog Signal Ground. These grounds (Pins 19 and 22) must be tied together at one point for the ADC as close as possible to the converter. Ideally, a single solid analog ground plane under the converter would be desirable. Current flows through the wires and etch stripes of the circuit cards, and since these paths have resistance and inductance, hundreds of millivolts can be generated between the system analog ground point and the ground pins of the ADC. Separate wide conductor stripe ground returns should be provided for high resolution converters to minimize noise and IR losses from the current flow in the path from the converter to the system ground point. In this way ADC supply currents and other digital logic-gate return currents are not summed into the same return path as analog signals where they would cause measurement errors.
Each of the ADC supply terminals should be capacitively decoupled as close to the ADC as possible. A large value capacitor such as $1 \mu \mathrm{~F}$ in parallel with a $0.1 \mu \mathrm{~F}$ capacitor is usually sufficient. Analog supplies are to be bypassed to the Analog Power

Return pin and the logic supply is bypassed to the Logic Power Return pin.
The metal cover is internally grounded with respect to the power supplies, grounds and electrical signals. Do not externally ground the cover.

CLOCK RATE CONTROL

The AD 1376/AD 1377 may be operated at faster conversion times by connecting the Clock Rate Control (Pin 23) to an external multiturn trim potentiometer ($\mathrm{TCR}<100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) as shown in Figure 13.

Figure 13. Clock Rate Control Circuit

HIGH RESOLUTION DATA ACQUISITION SYSTEM

The essential details of a high resolution data acquisition system using the AD 386 and AD 1376 or AD 1377 are shown in Figure 14. C onversion is initiated by the falling edge of the CON VERT ST ART pulse. This edge drives the AD 1376's or AD 1377's STAT US line high. The inverter then drives the AD 386 into hold mode. STATUS remains high throughout the conversion and returns low once the conversion is completed. This allows the AD 386 to reenter track mode.
This circuit can exhibit nonlinearities arising from transients produced at the A/D's input by the falling edge of CONVERT START. This edge resets the A/D's internal DAC; the resulting transient depends on the SHA's present output voltage and the A/D's prior conversion result. In the circuit of Figure 14 the falling edge of CONVERT START also places the SHA into hold mode (via the A/D's STATUS output), causing the reset transient to occur at the same moment as the SHA's track-andhold transition. T iming skews and capacitive coupling can cause some of the transient signal to add to the signal being acquired by the SHA, introducing nonlinearity.

Figure 14. Basic Data Acquisition System Interconnections
A much safer approach is to add a flip flop as shown in Figure 15. The rising edge of CONVERT START places the T / H into hold mode before the A/D reset transients begin. The falling

AD1376/AD1371

edge of ST AT US places the AD 386 back into track mode. System throughput will be reduced if a long CON VERT START pulse is used. Throughput can be calculated from

$$
\text { Throughput }=\frac{1}{T_{A C Q}+T_{C O N V}+T_{C S}}
$$

where $T_{A C Q}$ is the T / H acquisition time, $T_{\text {conv }}$ is the time required for the A / D conversion, and $T_{C S}$ is the duration of CONVERT START. The combination of the AD 1376 and AD 386 will provide greater than 50 kHz throughput. No significant T/H droop error will be introduced provided the width of CONVERT START is small compared with the A/D's conversion time.

Figure 15. Improved Data Acquisition System
Using the AD1376 or AD 1377 at Slower Conversion Times The user may wish to run the ADC at slower conversion times in order to synchronize the A/D with an external clock. T his is accomplished by running a slower clock than the internal clock into the START CONVERT input. This clock must consist of narrow negative-going clock pulses, as seen in Figure 16. The pulse must be a minimum of 100 ns wide but not greater than 700 ns . H aving a rising edge immediately after a falling edge
inhibits the internal clock pulse. This enables the ADC to function normally and complete a conversion after 17 clock pulses.
The ST AT US command will function normally and switch high after the first clock pulse and will fall low after the 17th clock pulse. In this way an external clock can be used to control the ADC at slower conversion times.

Figure 16. Timing Diagram for Use with an External Clock
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

32-Pin Ceramic DIP

(DH-32E)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

