± 10 Volt Precision Reference Series

-

FEATURES

Very High Accuracy: $\mathbf{1 0 . 0 0 0}$ Volts $\pm 2.5 \mathrm{mV}$ (L and U)
Low Temperature Coefficient: 3ppm/ ${ }^{\circ} \mathrm{C}$
Performance Guaranteed $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
10 mA Output Current Capability
Low Noise
Short Circuit Protected
Available as /883B

PRODUCT DESCRIPTION

The AD2700 family of precision 10 volt references offer the user excellent accuracy and stability at a moderate price by combining the recognized advantages of thin film technology and active laser trimming. The low temperature drift ($3 \mathrm{ppm} / \mathrm{I}^{\circ}$) achieved with these technologies can be matched only by the use of ovens, chip heaters for temperature regulation, or with hand selected components and manual trimming. In addition, temperature-regulated devices are guaranteed only up to $+85^{\circ} \mathrm{C}$ operation, whereas the U - and S -grade devices in the AD2700 family are guaranteed to $+125^{\circ} \mathrm{C}$.
The AD2700 is a +10 volt reference which is designed to interface with high accuracy bipolar D/A converters of 10 and 12 bit resolution. The 10 mA output drive capability also makes the AD2700 ideal for use as a general positive system reference.

The AD2701 is a negative 10 volt reference especially designed to interface with CMOS D/A and A/D converters, as shown in the applications. For systems requiring a dual tracking reference, the AD2702 offers both positive and negative precision 10 volt outputs in a single package. Both are often used with 52XX Series 12-bit A/D converters which require -10 V external references for high accuracy over wide temperature ranges.
All three devices are offered in " J " and " L " grades for operation from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and " S " and " U " grades for the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. Screening to MIL-STD883 is available for " S " and " U " grades of the AD2700 family.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. Active laser trimming of both initial accuracy and temper ature performance results in very high accuracy over the temperature range without external components. The AD2700/01/02 LD grades have a maximum output voltage error at $25^{\circ} \mathrm{C}$ of $\pm 2.5 \mathrm{mV}$ with no external adjustments.
2. The performance of the AD2700 series is achieved by a well-characterized design and precise control over the manufacturing process.
3. The AD2700 series is well suited for a broad range of applications requiring an accurate, stable reference source such as high resolution data converters (12 or 14 bits), test and measurement systems and calibration standards.

Model	Output
AD2700	+10.000 V
AD2701	-10.000 V
AD2702	$\pm 10.000 \mathrm{~V}$

P.O. Box 280; Norwood, Massachusetts 02062 U.S.A

Information furnished by Anelog Devices is believed to be accurate
and reliable. However, no rmponsibility is assumed by Analog Devices and reliable. However, no reaponsibility is assumed by Analog Devices for its use; nor for any infringments of patents or other rights of third tion or otherwise under eny patent or patent rights of Analog Devices.

AD2700/AD2701/AD2702-SPECFICATIONS

MODEL	JD	LD	SD	UD
ABSOLUTE MAX RATINGS				
Input Voltage (for applicable supply)	$\pm 20 \mathrm{~V}$	*	*	*
Power Dissipation @ $+25^{\circ} \mathrm{C}-\mathrm{AD} 2700,01$	300 mW	*	*	*
- AD2702	450 mW	*	*	*
Operating Temperature Range	$-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	***
Storage Temperature Range	$-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}$	*		*
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$	*	*	*
Short Circuit Protection (to GND)	Continuous	*	*	*
OUTPUT VOLTAGE ERROR @ $+25^{\circ} \mathrm{C}$				
AD2700 10.000 V	$\pm 0.005 \mathrm{~V}$	$\pm 0.0025 \mathrm{~V}$	*	**
AD2701 -10.000V	$\pm 0.005 \mathrm{~V}$	$\pm 0.0025 \mathrm{~V}$	*	**
AD2702 $\pm 10.000 \mathrm{~V}$	$\pm 0.005 \mathrm{~V}$	$\pm 0.0025 \mathrm{~V}$	*	**
OUTPUT CURRENT ${ }^{1}$ - @ $+25^{\circ} \mathrm{C}$$\qquad$	$\pm 10 \mathrm{~mA}$	*	*	*
	$\pm 5 \mathrm{~mA}$	$+5 \mathrm{~mA},-2 \mathrm{~mA}$	**	**
OUTPUT VOLTAGE ERROR - AD2700,01 $\left(T_{\text {min }} \text { to } T_{\text {max }}\right)^{2}$ AD2702	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$			**
	$\pm 11.0 \mathrm{mV}$	$\pm 4.3 \mathrm{mV}$	$\pm 8 \mathrm{mV}$	$\pm 5.5 \mathrm{mV}$
	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	**	$3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	$\pm 11.0 \mathrm{mV}$	$\pm 5.5 \mathrm{mV}$	$\pm 10.0 \mathrm{mV}$	$\pm 5.5 \mathrm{mV}$
LINE REGULATION				
$\mathrm{V}_{\text {IN }}= \pm 13.5$ to $\pm 16.5 \mathrm{~V}$	$300 \mu \mathrm{~V} / \mathrm{V}$	*	*	*
LOAD REGULATION				
0 to $\pm 10 \mathrm{~mA}$	$50 \mu \mathrm{~V} / \mathrm{mA}$	*	*	*
OUTPUT RESISTANCE	0.05Ω	*	*	*
INPUT VOLTAGE, OPERATING	$\pm 13 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	*	*	*
QUIESCENT CURRENT - AD2700, 01	$\pm 14 \mathrm{~mA}$	*	*	*
- AD2702	$+17 \mathrm{~mA},-4 \mathrm{~mA}$	*	*	*
NOISE				
LONG TERM STABILITY (@ $+55^{\circ} \mathrm{C}$)	100ppm/1000 Hrs. (typ)	*	*	*
OFFSET ADJUST RANGE (Sec Diagrams)	$\pm 20 \mathrm{mV}$ (min)	*	*	*
OFFSET ADJUST TEMP DRIFT EFFECT	$\pm 4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ per mV of Adjust (typ)	*	*	*
PACKAGE OPTION ${ }^{3,4}$	DH-14C	DH-14C	DH-14C	DH-14C

NOTE

*Same as "JD" grade perfor
"-"S
Specified with resistive load to common. Device not intended for
use in driving a dynamic load.
Output voltage error as a function of temperature is determined using the box method
Each unit is rested at $T_{\min }, T_{\max }$ and $+25^{\circ} \mathrm{C}$. At each cemperature $V_{\text {OUT }}$ must fall
within the rectangular
$+25^{\circ} \mathrm{C}$ error plus the maximen drift error from $+25^{\circ} \mathrm{C}$. The box limits are noted
below the drift values used to calculate the box.
${ }^{3}$ Analog Devices reserves the right to ship side-brazed ceramic packages
(outline DH-14D) in lieu of the standard ceramic packages for J and
L grade parts.
${ }^{4}$ See Section 14 for package outline information
Specifications subject to change without notice.

AD2700/AD2701/AD2702

USING AD2700 REFERENCE WITH THE AD7520 AND AN IC AMPLIFIER TO BUILD A DAC
The AD2700 series is ideal for use with the AD7520 series of CMOS D/A converters. A CMOS converter in a unipolar application as shown below performs an inversion of the voltage reference input. Thus, use of the +10 volt AD2700 reference will result in a $\mathbf{0}$ to -10 volt output range. Alternatively, using

Unipolar Binary Operation

digital input	ANALOG OUTPUT
11111111111	$-\mathrm{V}_{\text {REF }}\left(1-2^{-10}\right)$
1000000001	$-V_{\text {REF }}\left(1 / 2+2^{-10}\right)$
1000000000	$\frac{-V_{\text {REF }}}{2}$
0111111111	$-\mathrm{V}_{\text {REF }}\left(1 / 2-2^{-10}\right)$
0000000001	$-V_{\text {REF }}\left(2^{-10}\right)$
0000000000	0

Table I. Code Table - Unipolar Binary Operation

Fine Trim Connections
the $\mathbf{- 1 0}$ volt AD2701 will result in a $\mathbf{0}$ to $\mathbf{+ 1 0}$ volt range. Two operational amplifiers are used to give a bipolar output range of $\mathbf{- 1 0}$ volt to +10 volt, as shown in the lower figure. Either the AD2700 or AD2701 can be used, depending on the transfer code characteristic desired. For more detailed applications information, refer to the AD7520 Data Sheet.

Bipolar Operation (4-Quadrant Multiplication)

DIGITAL INPUT	ANALOG OUTPUT
1111111111	$-\mathrm{V}_{\text {REF }}\left(1-2^{-9}\right)$
1000000001	$-\mathrm{V}_{\text {REF }}\left(2^{-9}\right)$
1000000000	0
0111111111	$\mathrm{~V}_{\mathrm{REF}}\left(2^{-9}\right)$
0000000001	$\mathrm{~V}_{\mathrm{REF}}\left(1-2^{-9}\right)$
0000000000	$\mathrm{~V}_{\mathrm{REF}}$
NOTE: $1 \mathrm{LSB}=2^{-9} \mathrm{~V}_{\text {REF }}$	

Table II. Code Table - Bipolar (Offset Binary) Operation

AD2700/AD2701/AD2702

USING THE AD2700 VOLTAGE REFERENCE WITH D/A CONVERTER
An AD2700 Voltage Reference can be used with an inverting operational amplifier and an R-2R ladder network. If all bits but the MSB are off (i.e., grounded), the output voltage is ($-\mathrm{R} / 2 \mathrm{R}) \mathrm{E}_{\mathrm{REF}}$. If all bits but Bit 2 are off, it can be shown that the output voltage is $1 / 2(-\mathrm{R} / 2 \mathrm{R}) \mathrm{E}_{\mathrm{REF}}=1 / 4 \mathrm{E}_{\mathrm{REF}}$: The lumped resistance of all the less-significant-bit circuitry (to the left of Bit 2) is 2 R ; the Thevenin equivalent looking back from the MSB towards Bit 2 is the generator, $\mathrm{E}_{\mathrm{REF}} / 2$, and the series resistance $2 R$; since the grounded MSB series

a. Basic Circuit
resistance, 2R, has virtually no influence - because the amplifier summing point is at virtual ground - the output voltage is therefore $-\mathrm{E}_{\mathrm{REF}} / 4$. The same line of thinking can be employed to show that the nth bit produces an increment of output equal to $2^{-n} \mathrm{E}_{\mathrm{REF}}$.

b. Example: Contribution of Bit 2; All Other Bits " O "

c. Simplified Equivalent of Circuit (b.)

