

PRODUCT DESCRIPTIONS

The AD363 and AD364 are comptere 16-channel dara acquisition systems which condition and subsequendly convert an analog voltage into diginal form. Each system consists of two devices, an annlog input stuge (ASS) and an enalog-to-digital converter (ADC). The AIS includes a two 8 -channel multiplexcra, a chanad addresa recister, a unity gain instrumentation am plifiet, and a sample-hold ampirfier. The muitiplexers may be connected to the inslrumentation amplifier in either an 8 . unique fenture of theee products is an internal user controlled unique feature of these products is an internal user controlled witch which connects the multaplexers in either single-ended or differential mode. This allows a single device to perform in either mode with hard-wire programming and permits interfacing a mixture of aingie-ended and differential signals by dymamically
The AD363 and AD364 differ in ADC performance. Each ADC is a complete 12 -bir successive approximation converter includ ing an internal clock and a precision reference. Active haser trimming resulta in maximum linearity errors of $\pm 0.012 \%$ with conversion times of $25 \mu 5$ (AD363) or $32 \mu s$ (AD364). The hy brid AD363-ADC has five user selectable input ranges (± 2.5, $\pm 5.0, \pm 10.0,0$ to +5 , and 0 to +10 volts) and includes a high impedance buffer amplifier. The AD364-ADC is a monolithic converter with 3 -state output buffer circuitry for direct interface to an 8-, 12-, or 16-bit processor bus and threc user selected input renges ($\pm 5, \pm 10$, and 0 to +10 vols).
Both products are specified for operation over both the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$) and military ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) temperature ranger. The AD363 and AD364 are available with environmen tal screening. Please contuct the factory or nearest sales office for details.

REV. A
Information furnished by Anelog Devicest is believed to be accurats and rollibbe. Howover. no responsibility is sessumsd by Anslog Dowices for its

One Technology Way, P.O. Box 9108, Nonwood, MA 02002-9106, U.S.A Tol: $617 / 239-4700 \quad$ Fix: 617/326-A703 Twx: 710/394-657 Tetex: $\mathbf{8 2 4 0 9 1}$ Cable: ANALOG NORWOODMASS

Pramemar	AD3632K	AD363RS
ANALOG INPUTS		
Number of Lapus	16 Sisqle-Ended or 8 Difitarential (Electronically Selecteble)	*
Loput Yoimpe Ranges		
Bipolar	$\pm 2.5 \mathrm{~V}, \pm 5.0 \mathrm{~V}, \pm 10.0 \mathrm{~V}$	*
Unipolar	$010+5 \mathrm{~V}, 0$ to +10 V	*
Inpur (Biss) Currest, per Channed	$=50 \mathrm{af}$ max	*
Input Impedasae		
ON Chenned	$10^{10} \mathrm{\Omega}, 100 \mathrm{pF}$	*
OFF Channed	$10^{10} \Omega, 10 \mathrm{pF}$	*
Input Funt Curreat (Power OFF or ON)	$20 \mathrm{~mA}, \mathrm{max}$, lavernulty Limuted	*
Cosumon-Mode Rejection		
Differeatiol Mode	$70 \mathrm{~dB} \min (80 \mathrm{~dB}) \mathrm{typ}) @ 1 \mathrm{kHz}, 20 \mathrm{Vp-p}$	*
Mur Crowtelk (Interchannel, Aay ORF Cheasel to Aay ON Chensel)	$-80 \mathrm{~dB} \max \left(-90 \mathrm{~dB}\right.$ ryp) @ $1 \mathrm{kHz}, 20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	
RESOLUTION	12 Bib	*
AOCURACY Oin		
Oin Eror ${ }^{1}$	$\pm 0.05 \%$ FSR (Adjusteble to Zero)	*
Unipoler Offet Erios	$\pm 10 \mathrm{mV}$ (Adjustrible to Zero)	*
Bipoer Offet Error	$\pm 20 \mathrm{mV}$ (Adjustable to Zeso)	*
Limmity Efror	$\pm 1 / 2 \mathrm{LSB}$ max	*
Difleremial Liomrity Error	± 1 LSB $\max (\pm 1 / 2$ LSB typ)	*
Relorive Accurcy	$\pm 0.025 \%$ FSR	*
Noise Error	$1 \mathrm{mV} \mathrm{p}-\mathrm{p}, 0.1 \mathrm{~Hz}$ to 1 MHz	*
TEMFIRATURE COEIFFICIENTS		
Guin		
Offer, $\pm 10 \mathrm{~V}$ Range		$\pm 8 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max ($\pm 5 \mathrm{ppmon} / \mathrm{C}_{\text {typ) }}$
Differential Lincerity	No Missing Codes Over Temperture Rapge	-
SIGNAL DYNAMICS		
Converion Time ${ }^{2}$	$\left.25 \mu s \max ^{(22 \mu s t y p}\right)$	*
Throughput Reve, Full Rated Accurscy	$25 \mathrm{kHz} \min (30 \mathrm{kHz}$ typ)	*
Semple-mad-Hold		
Apertuse Dilay	$200 \mathrm{~ns} \max (150 \mathrm{~ns} \mathrm{cyp}$)	-
Aperture Uncartuinty	500 pa max (100 po typ	*
Acquisition Time		
To $\pm 0.01 \%$ of Pinal Vabue		*
For Full-Soak Step Feedthrovial	$-70 \mathrm{~dB} \operatorname{mux}\left(-80 \mathrm{~dB}\right.$ yp) $\mathrm{Ca}^{1} 1 \mathrm{kfz}$	*
Droop Rate	$2 \mathrm{mV} / \mathrm{ms} \max (1 \mathrm{mV} / \mathrm{mas}$ rpp $)$	*
DIGITAL INPUT SIGNALS		
Convert Command (to ADC Section, Pin 21)	Positive Pule, 200 ns min Width. Lending Edape ("0" to " 1 ") Resets Reqister, Triling Fdge ("1" to "0") Surts Conversion 1 TTL. Loed	
Inpur Charanel Select (10 Amelog		
loput Section, Pise 28-31)	4Bit Binery Chaanel Addreas	*
Chroed Selver Lesth (to Asalos		
(Inpur Sectioa, Pin 32)	" l " Lach Trunsperent	*
	"0" Lavehod	*
	4 LS TTL Londs	*
Semple-Hodd Commmad (to Anviog		
Inpur Section Pin 13 Normally	"0" Sample Mode	*
Connected to ADC "Surus,"	" 1 " Hold Made	*
Pin 20$)$	$2 \mathrm{LS} \mathrm{TTL}$.I onds	-
Sbort Cycle (mo ADC Section Pin 14)	Conapet to +5 V for 12 -Hits Resolution Consect to Ousput Bit n +1 for a Bits	
	Reoolution	*
	1 TTL Load	*
Single-EndedDiffereniel Mode Select (to Anulog laput Section, Pin 1)	"0" Single Evded Mode	*
	"1" Differenial Mode (+4.0 V min)	*
	3 TTL Loeds	-

AD363/A0364

Prommeter	AD363RR	AD363RS
DIGITAL OUTPUT SIGNALS' (All Codes Podidive True) Prualled Dite Unipolur Code Bipolar Code Outpur Drive Serinl Date (NR2 Format) Unipoler Code Bipoler Code Output Drive Stras (STitio) Outpur Drive Insemal Clock Ourpur Drive Froquency	Binary Offect Binary/Twos Complement 2 TTL Loads Binary Offiet Binary 2 TTL Londs Logic "1" ("0") During Conversion 2 TTL Londs 2 TTL Londs 500 kHz	
DNTERNAL REFERENCE VOLTAGE Max Externel Current Voluge Tempenture Coefficient	$\begin{aligned} & +10.00 \mathrm{~V},=10 \mathrm{mV} \\ & \pm 1 \mathrm{mh} \\ & \pm 20 \mathrm{ppmic} \max \\ & \hline \end{aligned}$	
POWER REQUIREMENTS Supply VotugesKurrens Tocel Pome Dimipation	$+15 \mathrm{~V}, \pm 5 \%$ @ $+45 \mathrm{~mA} \max (+38 \mathrm{~mA} \mathrm{mp})$ $-15 \mathrm{~V}, \pm 5 \%$ @ -45 mA max (-38 mA mp) $+5 \mathrm{~V}, \pm 5 \%$ @ $+136 \mathrm{~mA} \max (+113 \mathrm{~mA} \mathrm{mp})$ 2 Wotts max (1.7 Watte typ)	
TEMPERATURE RANGE Spocification Stompe	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+700 \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { 10 }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} 0+155^{\circ} \mathrm{C} \end{aligned}$
PACKAGE OPTIONS Anslog Inpur Section (DH-32E) AD Section (DH-32C)	AD363RRD AD363RRD	AD363RSD AD363RSD

NOTES
Widh 50 R, 1% fixed recistor in plece of Gain Adjux por
Converioa time of ADC Scection.

${ }^{*}$ Specificactions morc A AD363RK.
Sppecificacions ubbiect to change widbout sotice.
absolute maximum rating (all models)

+V, Digital Supply	
+V, Anelog Supply	6 V
-V, Analog Supply	-16 V
$\mathbf{V}_{\mathbf{R}}$, Signal	$\pm \mathrm{V}$, Analog Supply
$\mathrm{V}_{\text {IN }}$, Dipital	0 to $+V$, Disital Supply
AGND to DGND	. ± 1

ANALOG INPUT SECTION		ANALOG-TO-DIGITAL CONVERTER SECTION	
Piz Number	Fenction	Pis Number	Function
1	Single-End/Differential Mode Select "0": Single-Ended Mode " 1 ": Differential Mode (+4.0 V min)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Data Bit 12 (Least Significant Bit) Out Data Bit 11 Out Data Bit 10 Out
2	Digital Ground	4	Data Bit 9 Out
3	Posidive Digital Power Supply, +5 V	5	Data Bit 8 Out
4	"High" Anslog Input, Channel 7	6	Data Bit 7 Out
5	"High" Analog Input, Channel 6	7	Data Bit 6 Out
6	"Hish" Amalog lapat, Channel 5	8	Data Bit 5 Out
7	"High" Anulog laput, Channel 4	9	Data Bit 4 Out
8	"High" Analog Input, Cheanel 3	10	Data Bit 3 Out
9	"High" Anelog Input, Chennel 2	11	Data Bit 2 Out
10	"High" Analog Input, Channel 1	12	Data Bit 1 (Most Significant Bit) Out
11	"High" Analog Input, Channel 0	13	Data Bit (MSB) Out
12	No Conoest	14	Short Cycle Control
13	Sumple-Hold Command "0": Sample Mode "1": Hold Mode Normally Connected to ADC Pin 20	$\begin{aligned} & 15 \\ & 16 \end{aligned}$	Connect to +5 V for 12 Bits Connect to Bit ($\mathrm{n}+1$) Out for a Bits Digital Ground Positive Digital Power Supply, 5 V
14	Offer Adjust	17	Status Out
15	Offset Adjust		" 0 ": Conversion in Progress
16	Anelog Output Normally Connected to ADC "Analog \ln "		(Paralled Data Not Valid) " 1 ": Conversion Complete (Paralled Data Valid)
17	Analog Ground	18	+10 V Reference Our
18	"High" ("Low") Analog loput, Channel 15 (7)	19	Clock Out (Runs During Conversion)
19	"Figh" ("Low") Analog laput, Chansel 14 (6)	20	Status Out
20	Negative Anelog Power Supply, -15 V		"0": Conversion Complete
21	Poxitive Aanlog Power Supply, +15 V		(Parallel Data Valid)
22	"Kigh" ("Low") Anelog Input, Channel 13 (5)		" 1 ": Conversion in Progress
23	"High" ("Low") Analog Input, Channel 12 (4)		(Parallel Data Not Vabid)
24	"Highn" ("Low") Anelog Input, Channel 11 (3)	21	Convert Start In
25	"High" ("Low") Analog Input, Channel 10 (2)		Reset Logic
26	"High" ("Low") Analog Input, Channel 9 (1)		Start Convert
27	"High" ("Low') Andog Input, Channed 8 (0)	22	Comparator In
28	Iaput Channel Select, Address Bit AE	23	Bipolar Offet
29	Input Channel Select, Address Bit AO		Open for Unipolar Inputs
30	Inpur Chnnnel Select, Address Bit AI		Connect to ADC Pin 22 for
31	Input Channel Select, Addres Bit A2		Bipolax Inputs
32	Inpun Channel Sefect Latch "0": Latched " 1 ": Latch "Transparent"	24	10 V Span R In
		25	20 V Span R In
		26	Analog Ground
		27	Gain Adjus
		28	Pasitive Anslog Power Supply, +15 V
		29	Buffer Out (for External Use)
		30	Buffer In (for External Use)
		31	Negative Analog Power Supply, -15 V
		32	Serial Data Our Each Bir Vatid on Truiling (ఒ) Edge Clock Our, ADC Pin 19

AD363/AD364

AD363/10364

Puremer	AD364RJ	AD3GRR	AD3gars	AD3GART	Unitu
digital OUTPUT SIGNaLS					
Logic Outputs $\mathrm{T}_{\text {and }}$ to $\mathrm{T}_{\text {max }}$					mA min $\mathrm{m}_{\mathrm{A}}^{\min }$
Siak Current $\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	1.6	*	*	*	
Source Curreat $\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$	0.5	*	*	*	
Ourput Leakage When in					
Three Stare	± 40	*	*	*	$\mu_{\text {A max }}$
Output Coding					
Uaipoler	Positive True Binery	*	*	*	
Bipoler	Pouitive True Offres				
POWER REQUIREMENTS Supply Voluqucucurtena					
	$+15 \mathrm{~V}, \pm 5 \%$ @ 36 mA max $-15 \mathrm{~V}, \pm 5 \%$ (1) 65 mA max $+5 \mathrm{~V}, \pm 5 \%$ © 75 mA max	*		*	
PACKAGE OPTIONS	AD36ARJD AD364RD				
Aastos lopu Section (DH-32E)		AD36ARKD AD364RKD	AD364RSD AD36ARSD	AD364RTD AD364RTD	
ADC Section (D-28)					

- peocicicuicon mane maD304R

 Specificution mbivect to changer without nocioc

*D $=$ Hermetic DIP

AD363/AD364

AIS Functional Block Diagram
design
Cumerpt
Fiprosi 1 and 2 show a peneral DAS application using the AD363 and AD364, reapectively.
By dividins the data sequisition task into two sections, several importhot adventages are realized. Performance of each design is optimized for its specific function. Production yields are in creased thus decreasing costs. Furchermore, the atandard configuration packages plug into standard socketz and art eacier to hande than larger packages with higher pin counts.

Syatem Timias
Systean Timing
Figure 3 is a general timing diagran for the circuits shown in
Figures 1 and 2 operating at the maximum conversion nte.

Figure 3. AD363 Timing Diagram
The normal sequence of events is as follows:

1. The appropriate Channel Select Address is latched into the address register. Tine is allowed for the multiplexers to setrle.
2. A Convert Start command is issued to the ADC which, in response, indicates that it is "busy" by placing a Logic " 1 " on its Status line.
3. The ADC Sturus controls the sample-andi-hold. When the ADC is "busy," the sample-and-hold is the Hold mode.
4. The ADC goss into its conversion routine. Since the semple-and-hold is holding the proper analog value, the address may and-hold is holding the proper analog value, the address may be updated during conversion. Thus muluplexer setuing um cas coincide with coaveraion and need not affect uroughpur
rate.
5. The ADC indicates completion of its conversion by rerurnin Starus to Logic " 0 ." The sample-and-hold returns to the Sample mode.
6. If the input signal has changed full scale (different channels may be widely varying data) the sample-and-hold will typicully require 10 microseconds to "acquire" the next input to sufficient sccuracy for 12 -bit conversion.
After allowing a suituble interval for sample-and-hold to stabilize at its new value, enother Coovert Start command may be issued to the ADC.

ADS63-ADC OPRRATION

Figure 4 shows a demiled timing diagram for the AD363-ADC. Serial data changes on risiong edges of the internal clock and is serial deta changes on nising edices of the

AD364-ADC OPERATION

There are two sets of control pins on the AD364-ADC: the gen enal control inputs ($C E, \overline{C S}$, and $R \bar{C}$) and the internal register controis inputs ($12 / 8$ and A_{0}). The general control pins function similerly to those on most ND converters, performing device riming, addressing, cycle initiation, and read enable functions The internal register control inputs, which are not found on most $A D$ converters, select output data format and conversion cycle lengh.

Figure 4. AD363-ADC Timing Diagram (Binary Code 110101011001)

The two major control functions, convert start and read enable, are concoilled by CE, $\overline{C S}$, and $R \mathbb{C}$. Aithough all threc inputs must be in the correct stare to perform the function (for convert rur, $\mathrm{CE}=1, \mathrm{CS}=0, \mathrm{RC}=0$; for read canble, $\mathrm{CE}=1$, CS conver start would be to first ser $R \mathcal{K}^{Z}=0$ (from $R W^{W}$ line); adconvert start would be to first set RC $=0$ (from RN line); adCE. A read would be done similerly but with $R \subset \bar{C}=1$.
A_{1} (byte select) and $12 \sqrt{8}$ (data format) inputs work together to control the outpur data and conversion cycle. In almort all situacioos 1278 is hard-wired "high" (to V Loctc) or "low" (to Digital Common). If it is wired high, all 12 data lines will be enabled when the read function is called by the seneral control inputs. For an 8 -bit bus interfice, $12 \sqrt{5}$ will be wired low. In this mode, only the 8 upper bits or the 4 lower bits can be enabled at once, as addressed by Ao. For these applications, the 4 LSBs (Pins 16-19) abould be hand-wired to the 4 MSB (Pins 24-27). Thus, during a read, when A_{0} is low, the upper 8 bite are enabled and present date on Pins 20 strough 27. When A_{0} goes high, the upper 8 data bits are diasbled, the 4 LSBs then present data to
Pina 24 to 27 , and the 4 middle bits are overridden so that zeros are presented to Pins 20 through 23.
The A_{0} input performs an additional function of controlling conversion length. If A_{0} is beld low prior to cycle initintion, a full 12 -bit 25 us cycle will result if A_{0} is beld high prior to cycle initinion, a shortened 8 -bit, 16μ cycle will result. The toline must be set prior to cycle initiation and beld in the desored position at least until STS goes high. Thus, for micro-
processor interfice applications, the Λ_{0} line must be properl controlled during both the convert start and read functions.

STANDARD FULL CONTROL INTERFACE
The timing for the scandurd full control interface is shown in Figure 5. In this operating mode, $\overline{C S}$ is used as the address in. put which selects the perticular device, RC selects berween the read data and start conversion functions, and CE is used to time the sctual functions.

Figure 5. AD364-ADC Timing Diagram
The left side of the figure shows the conversion sart control. CS and NC are brought low (their sequence does not matter), then the stert palee is applied to CE. The timing diagram shows a cime delay for CS and PCC prior to the start pulse at CE. If less tine than this is allowed, the conversion will still be started, bu an appropriately longer pulse will be needed at CE. However if the hold times for $\overline{C S}$ and $R \bar{C}$ after the rising edge of the start pulse at CE are not followed, the conversion may not be initiated.
The Ao line determines the conversion cycle length and must be selecred prior to conversion initiation. If A_{0} is low, a 12 -bit cycle results; if A_{0} is high, an 8 -bit thort cycie resultr. Minimum serup and hold times are shown. The staus line goes high to indicate conversion in progress. The analog input signal is al lowed to vary until the STS goes high. It must then be held stendy until STS again goes low at the end of conversion.
The data read function operates in a similar fashion except that RE is now held high. The data is stored in the output register und can be recalled to will until a new onnversion cycle is con manded. In addition, if the converter is arranged in the 8 -bit dita mode, the A_{0} line now functions as the byte select address, with serup and bold times es shown. With A_{0} low, Pins 20 to 27 (DB4-11) come out of three-state and present data. With A_{0} high, Pins 16-19 (DBO-3) come out of three-state wich data end Pins $20-23$ present ective railing zeros. In the 8 -bit mode, Pins 16-19 will be hard-wired directly to Pin 24-27 for direcs two byte loeding onto an 8 -bit bus. There are two delay times for the daus lines after CE is brought low: t_{HD} is the delay until the outputs are fully invo the high impedance state.
STANDALONE OPERATION
For simpler control functions, the AD364-ADC can be controlled with just RC. In this case, CE is wired high, $\overline{C S}$ low, $12 / \overline{8}$ high, and A_{0} Jow. There are two ways of cycling the device

AD363/A0364

TIMING SPECIFICATIONS-FULL CONTROL MODE

$t_{\text {DSC }}$	400 ns max	$t_{\text {DD }}$	200 as max
$\mathrm{t}_{\text {HEC }}$	300 ns min	$t_{\text {HD }}$	25 ns min
${ }_{\text {tsec }}$	300 ns min	$\mathrm{t}_{\text {tagR }}$	150 ns min
$\mathrm{t}_{\mathrm{HSC}}$	20015 min	$\mathrm{t}_{\text {skR}}$	0 min
$\mathrm{tanc}_{\text {sac }}$	250 ms min	$\mathrm{t}_{\text {tak }}$	150 mm
$t_{\text {tacc }}$	200 ns min	${ }^{\text {thiss }}$	S0 as min
$\mathrm{t}_{\text {sac }}$	0 min	$\mathrm{t}_{\text {HRR }}$	0 min
${ }_{\text {thac }}$	300 ns min	trak	50 ns min
t_{c}	15-35 ps ($12-\mathrm{Bit}$)	$\mathrm{t}_{\text {fll }}$	150 ns max
	$10-24 \mu \mathrm{~s}$ (8-Bit)	$\mathrm{r}_{\text {cal }}$	20 ns min
${ }^{\text {t }}$ Mn	10-18 $\mu \mathrm{s}$	$\mathrm{t}_{\text {SA }}$	0 min

with this simple bookup. If a negaive pulse is used to initiste conversion as in Figure 6, the converter will automatically bring the 12 datu lines out of three-state at the end of conversion. The data will remain valid on the output lines until another pulse is applied.
II the conversion is initieted by a high pulse as shown in Figure 7, the deta lines are beld in three-state at the end of conversion undil RX is brousthe high. The next conversion cycle is initiated when RK goes low; the data from the previous cycle will remsin whid for the time $t_{\text {HDs. }}$. An alternative to the sbove is to toggie RE as needed to initiate a new cycle on read data. Data will appear when R / \mathbb{C} is brought high, a new cyele is initiated when RKC goes low.

Figure 6.

figure 7.
TIMNNG SPECIFICATIONS-FULL CONTROL MODE

${ }_{\text {HRL }}$	250 as min	
$t_{\text {ds }}$	600 ns max	
$\mathrm{t}_{\text {HDE }}$	25 ns max	
${ }^{\text {ths }}$	300 ns min	1000 as \max
$\mathrm{t}_{\text {HRM }}$	300 ns min	
$t_{\text {DDR }}$	250 as max	

APPLICATIONS

Sinde-EadedDifferentint Mode Control
The AIS features an internal analog switch that configures the Analog Iaput Section in either a 16 -channel single-ended or 8 -channel differentis mode. This switch is controlled by a non TIL logic input applied to Pin 1 of the Analog Input Section: "0": Single-Ended (16 Channeis)
" 1 ": Differential (8 Channels) (+4.0 V min)
When in the differential mode, a differential source may be applied between corresponding "High" and "Low" anelos input channels.
It is possible to mix SE and DIFF inputa by using the mode It is possible to mix SE and DiFF inpura by using che mode
control to commund the appropriate mude. In this case, four microseconds mum be allowed for the output of the Analog Input Section to sectle to within $\pm 0.01 \%$ of its final value, but if put Section to sectue to within $\pm 0.01 \%$ of its final value, but if dress, no significment additional delay is introduced. The effect of this delay may be eliminated by chanting modes while a conver sion is in progress (with the semple-and-bold in the "Hold" mode). When SE and DIFF signals are being processed concurrently, the DIFF signals must be applied berween corresponding "High" and "Low" analog input channels. Another application of this fenture is the capebility of measuring 16 sources individu ally and/or measuring differences berween pairs of those sources.
laput Chansel Addressing
Table I is the truth table far input channel addressing in borh the single-ended and differential modes. The 16 -single-ended channels may be addressed by applying the corresponding digital number to the four laput Channel Select address bits, AE, AO, Al, A2 (Pins 28-31). In the differential mode, the eight channets are addressed by applying the appropriate digital code to $\mathbf{A 0}, \mathbf{A 1}$, and A2; AE must be enabied with a Logic " I " Internal logic monitors the status of the SE/DIFF Mode input and addresses the multiplezers singularly or in pairs as required.

ADDRESS				ON CHANNEL (Pin Nomber)		
AE	A_{2}	A1	A0	Single-Eaded	Differential	
					"H1"	'Lo"
0	0	0	0	0 (11)		
0	0	0	1	1 (10)		
0	0	1	0	2 (9)		
0	0	1	1	3 (8)		
0	1	0	0	4 (7)		
0	1	0	1	5 (6)		
0	1	1	0	6 (5)		
0	1	1	1	7 (4)		
1	0	0	0	8 (27)	0 (11)	0 (27)
1	0	0	1	9 (26)	1 (10)	1 (26)
1	0	1	0	10 (25)	2 (9)	2 (25)
1	0	1	1	11 (24)	3 (8)	3 (24)
1	1	0	0	12 (23)	4 (7)	5 (23)
1	1	0	1	13 (22)	5 (6)	5 (22)
1	1	1	0	14 (19)	6 (5)	6 (19)
1	1	1	1	15 (18)	7 (4)	7 (18)

Table I. Input Channel Addressing Truth Table

AD363/A0364

If no offiet adjusement is desired, Pin 12 should be connected to Pin 9 (unipolar mode) or to Pin 8 rhrough a $50 \Omega \mathrm{I} \%$ resistor (bipoler mode).

Figure 10a. Unipolar Gain a Offset

Figure 10b. Bipolar Gain 8 Offset

Fipent Scaliag: Conanections for the various $A D C$ input ranges are given in Tables II and III.
Beffer: An uncommitted unity-gain buffer is available in the AD363-ADC. This buffer has a $2 \mu s$ settling time to 0.01% fo 120 V step. Its input should be grounded if the buffer is not med.

Range	Connect Ananlog Inpat To Pin:	Connect Span Pin:	Connect Bipolar Pin 23 To:
0 to +5 V	24	25 to 22	
0 to +10 V	24	-	
-2.5 V to +2.5 V	24	25 to 22	
-5 V to +5 V	24	-	22
-10 V to +10 V	25	-	

Table II. AD364-ADC Pin Connections

Range	Conaect Analog Lappat To Pia:	Connect Pin 12 To:
0 to +10 V	13	GND*
-5 V to +5 V	13	Pin $8^{* *}$
$-10 \mathrm{~V} 10+10 \mathrm{~V}$	14	Pin $8^{* *}$

-Refer to Figure 10 for grin and offeet adiusctrentr. *Refer to Figure 100 for piin und offerer adiusimena.

Table III. AD36A-ADC Pin Connections
Other Considerations
Grounding: Aralog and digital sigral grounds should be kept separate where possible to prevent digital signals from dowing in the analog ground circuit and inducing spurious analog signal poise. Analog Ground (Pin 17) and Digital Ground (Pin 2) are not connected internally; these pins must be connected exteraally for the system to operate propetly. Preferably, this connec nally for the system to operate property. Preferably, this connec-
tion is made at only one point, as close to the AIS, as possible. ion is made at only one point, as close to the AIS, as possible.
The case is connected internally to Digital Gmound to provide The case is connected internally to Digital Ground to provide good electrostatic shielding. If the grounds are not ried common on the same card with the AIS they should be connected with
back-to-back general purpose diodes as shown in Figure 11. back-ro-back general purpose diodes as shown in Figure 11. This will protect the AIS from possible damage caused by volt ages in excess of ± 1 volt between the ground aystems which
could occur if the key grounding card should be removed from could oscur if the key grounding card should be removed from the overall system. The device will operate properly with as much as $\pm 200 \mathrm{mV}$ between grounds, however this
will be reflected direcly as an input offser voluge.

Figure 11. Ground-Feult Protection Diodes

Power Supply Bypuscing: The $\pm 15 \mathrm{~V}$ and +5 V power leads should be capecirively bypassed to Anelog Ground and Digital Ground respectively for optimum device performance. $1 \mu \mathrm{~F}$ tan taum types are recommended; these capacitors should be located close to the system. It is not necessary to shunt these capacitors with disc capacitors to provide additional high frequency power supply decoupling since each power lead is bypassed internally with a $0.039 \mu \mathrm{~F}$ ceramic capacitor.

D-28 Package

