# Nonvolatile Memory, Quad 64-Position Potentiometers 

## FEATURES

Nonvolatile Memory ${ }^{1}$ Preset Maintains Wiper Settings 4-Channel Independent Programmable 64-Position Resolution Full Monotonic Operation
$10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$ Terminal Resistance
Permanent Memory Write Protection
Wiper Settings Readback
Linear Increment/Decrement
Log Taper Increment/Decrement
Push Button Increment/Decrement Compatible SPI Compatible Serial Interface with Readback Function 3 V to 5 V Single Supply or $\pm 2.5$ V Dual Supply 11 Bytes User Nonvolatile Memory for Constant Storage $100-$ Year Typical Data Retention $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$

## APPLICATIONS

Mechanical Potentiometer Replacement Instrumentation: Gain, Offset Adjustment Programmable Voltage to Current Conversion Programmable Filters, Delays, Time Constants Line Impedance Matching
Power Supply Adjustment

## GENERAL DESCRIPTION

The AD5233 provides a nonvolatile memory, digitally controlled set of potentiometers ${ }^{2}$ with 64 -position resolution. These devices perform the same electronic adjustment function as a mechanical potentiometer. The AD5233's versatile programming via a standard 3-wire serial interface allows sixteen modes of operation and adjustment including scratch pad programming, memory storing and retrieving, increment/decrement, log taper adjustment, wiper setting readback, and extra user defined EEMEM.
In the scratchpad programming mode, a specific setting can be programmed directly to the $\mathrm{RDAC}^{2}$ register, which sets the resistance at terminals W-A and W-B. The RDAC register can also be loaded with a value previously stored in the EEMEM ${ }^{1}$ register. The value in the EEMEM can be changed or protected. When changes are made to the RDAC register, the value of the new setting can be saved into the EEMEM. Thereafter, such value will be transferred automatically to the RDAC register during system POWER ON, which is enabled by the internal preset strobe. EEMEM can also be retrieved through direct programming and external preset pin control.

[^0][^1]FUNCTIONAL BLOCK DIAGRAM


The linear step increment and decrement commands allows the setting in the RDAC register to be moved UP or DOWN, one step at a time. For logarithmic changes in wiper setting, a left/right bit shift command adjusts the level in $\pm 6 \mathrm{~dB}$ steps.


Figure 1. $R_{W A}(D)$ and $R_{W B}(D)$ vs. Decimal Code

The AD5233 is available in a thin TSSOP-24 package. All parts are guaranteed to operate over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700

## AD5233-SPECIFICATIONS

## ELECTRICAL CHARACTERISTICS— $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$ VERSIONS

( $\mathrm{V}_{D D}=3 \mathrm{~V} \pm 10 \%$, or $5 \mathrm{~V} \pm 10 \%$, and $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{D D}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$ unless otherwise noted.)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter \& Symbol \& Conditions \& Min \& Typ \({ }^{1}\) \& Max \& Unit \\
\hline \begin{tabular}{l}
DC CHARACTERISTICS RHEOSTAT M \\
Resistor Differential Nonlinearity \({ }^{2}\) \\
Resistor Integral Nonlinearity \({ }^{2}\) \\
Nominal Resistor Tolerance \\
Resistance Temperature Coefficient Wiper Resistance
\end{tabular} \& \begin{tabular}{l}
R-DNL \\
R-INL \\
\(\Delta \mathrm{R}_{\mathrm{WB}}\) \\
\(\Delta \mathrm{R}_{\mathrm{AB}} / \Delta \mathrm{T}\) \\
\(\mathrm{R}_{\mathrm{W}}\)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{R}_{\mathrm{WB}}, \mathrm{~V}_{\mathrm{A}}=\mathrm{NC}, \text { MONOTONIC } \\
\& \mathrm{R}_{\mathrm{WB}}, \mathrm{~V}_{\mathrm{A}}=\mathrm{NC} \\
\& \mathrm{D}=3 \mathrm{~F}_{\mathrm{H}} \\
\& \\
\& \mathrm{I}_{\mathrm{W}}=100 \mu \mathrm{~A} \\
\& \text { Code }=\text { Half-Scale }
\end{aligned}
\] \& \[
\begin{aligned}
\& -0.5 \\
\& -0.5 \\
\& -40
\end{aligned}
\] \& \[
\begin{aligned}
\& \pm 0.1 \\
\& \pm 0.1 \\
\& 600 \\
\& 15
\end{aligned}
\] \& \[
\begin{aligned}
\& +0.5 \\
\& +0.5 \\
\& +20 \\
\& \\
\& 100
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { LSB } \\
\& \text { LSB } \\
\& \% \\
\& \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\& \Omega
\end{aligned}
\] \\
\hline \begin{tabular}{l}
DC CHARACTERISTICS POTENTIOME \\
Resolution \\
Differential Nonlinearity \({ }^{3}\) \\
Integral Nonlinearity \({ }^{3}\) \\
Voltage Divider Temperature Coefficient \\
Full-Scale Error \\
Zero-Scale Error
\end{tabular} \& \begin{tabular}{l}
DIVIDER \\
N \\
DNL \\
INL \\
\(\Delta \mathrm{V}_{\mathrm{w}} / \Delta \mathrm{T}\) \\
\(\mathrm{V}_{\mathrm{wFSE}}\) \\
\(\mathrm{V}_{\text {wZSE }}\)
\end{tabular} \& \begin{tabular}{l}
MODE \\
MONOTONIC \\
Code \(=\) Half-Scale \\
Code \(=\) Full-Scale \\
Code \(=\) Zero-Scale
\end{tabular} \& \[
\begin{aligned}
\& 6 \\
\& -0.5 \\
\& -0.5 \\
\& -1.5 \\
\& 0
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.1 \\
\& 0.1 \\
\& 15
\end{aligned}
\] \& \[
\begin{aligned}
\& +0.5 \\
\& +0.5 \\
\& 0 \\
\& +1.5
\end{aligned}
\] \& \begin{tabular}{l}
Bits \\
LSB \\
LSB \\
ppm \(/{ }^{\circ} \mathrm{C}\) \\
\%FS \\
\%FS
\end{tabular} \\
\hline \begin{tabular}{l}
RESISTOR TERMINALS \\
Terminal Voltage Range \({ }^{4}\) Capacitance \({ }^{5}\) A, B \\
Capacitance \({ }^{5}\) W \\
Common-Mode Leakage Current \({ }^{5,6}\)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{A}, \mathrm{~B}, \mathrm{~W}} \\
\& \mathrm{C}_{\mathrm{A}, \mathrm{~B}} \\
\& \mathrm{C}_{\mathrm{W}} \\
\& \mathrm{I}_{\mathrm{CM}}
\end{aligned}
\] \& \(\mathrm{f}=1 \mathrm{MHz}\), measured to GND , Code \(=\) Half-Scale \(\mathrm{f}=1 \mathrm{MHz}\), measured to GND, Code \(=\) Half-Scale \(\mathrm{V}_{\mathrm{w}}=\mathrm{V}_{\mathrm{DD}} / 2\) \& \(\mathrm{V}_{\text {ss }}\) \& \begin{tabular}{l}
35 \\
35
\[
0.015
\]
\end{tabular} \& \[
\mathrm{V}_{\mathrm{DD}}
\] \& \begin{tabular}{l}
V \\
pF \\
pF \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline \begin{tabular}{l}
DIGITAL INPUTS \& OUTPUTS \\
Input Logic High Input Logic Low Input Logic High Input Logic Low Input Logic High Input Logic Low Output Logic High (SDO, RDY) Output Logic Low Input Current Input Capacitance \({ }^{5}\) Output Current \({ }^{5}\)
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{IH}}\) \\
\(\mathrm{V}_{\text {IL }}\) \\
\(\mathrm{V}_{\mathrm{IH}}\) \\
\(\mathrm{V}_{\text {IL }}\) \\
\(\mathrm{V}_{\mathrm{IH}}\) \\
\(\mathrm{V}_{\text {IL }}\) \\
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\text {OL }}\) \\
\(\mathrm{I}_{\mathrm{IL}}\) \\
C \\
\(\mathrm{I}_{\mathrm{O} 1}, \mathrm{I}_{\mathrm{O} 2}\)
\end{tabular} \& \begin{tabular}{l}
with respect to GND, \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\) \\
with respect to GND, \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\) \\
with respect to GND, \(\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}\) \\
with respect to \(\mathrm{GND}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}\) \\
with respect to \(\mathrm{GND}, \mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V}\), \\
\(\mathrm{V}_{\mathrm{SS}}=-2.5 \mathrm{~V}\) \\
with respect to \(\mathrm{GND}, \mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V}\), \\
\(\mathrm{V}_{\mathrm{SS}}=-2.5 \mathrm{~V}\) \\
\(\mathrm{R}_{\text {PULL-UP }}=2.2 \mathrm{k} \Omega\) to 5 V \\
\(\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {LOGIC }}=5 \mathrm{~V}\) \\
\(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) or \(\mathrm{V}_{\mathrm{DD}}\)
\[
\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},
\] \\
Sourcing only
\[
\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},
\] \\
Sourcing only
\end{tabular} \& \begin{tabular}{l}
2.4 \\
2.1 \\
2.0 \\
4.9
\end{tabular} \& \[
\begin{aligned}
\& 4 \\
\& 50
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.8 \\
\& 0.6 \\
\& \\
\& 0.5 \\
\& \\
\& 0.4 \\
\& \pm 2.5
\end{aligned}
\] \&  \\
\hline \begin{tabular}{l}
POWER SUPPLIES \\
Single-Supply Power Range Dual-Supply Power Range Positive Supply Current Programming Mode Current Read Mode Current \({ }^{7}\) Negative Supply Current \\
Power Dissipation \({ }^{8}\) Power Supply Sensitivity \({ }^{5}\)
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{DD}}\) \\
\(\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}\) \\
\(\mathrm{I}_{\mathrm{DD}}\) \\
\(\mathrm{I}_{\mathrm{DD}(\mathrm{PG})}\) \\
\(\mathrm{I}_{\mathrm{DD}(\mathrm{XFR})}\) \\
\(\mathrm{I}_{\mathrm{sS}}\) \\
\(\mathrm{P}_{\text {DISS }}\) \\
\(\mathrm{P}_{\mathrm{ss}}\)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} \\
\& \\
\& \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND} \\
\& \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND} \\
\& \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND} \\
\& \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \\
\& \mathrm{~V}_{\mathrm{DD}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{A}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=-2.5 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND} \\
\& \Delta \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%
\end{aligned}
\] \& \[
\begin{aligned}
\& 2.7 \\
\& \pm 2.25 \\
\& \\
\& 0.3
\end{aligned}
\] \& 3.5
40
3

0.55
0.018

0.002 \& \[
$$
\begin{aligned}
& 5.5 \\
& \pm 2.75 \\
& 10 \\
& \\
& 9 \\
& \\
& \\
& 10 \\
& 0.05 \\
& 0.01
\end{aligned}
$$

\] \& | V V |
| :--- |
| $\mu \mathrm{A}$ |
| mA |
| mA |
| $\mu \mathrm{A}$ |
| mW |
| \%/\% | <br>

\hline
\end{tabular}

| Parameter | Symbol | Conditions | Min | Typ ${ }^{1}$ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DYNAMIC CHARACTERISTICS ${ }^{5,9}$ <br> Bandwidth <br> Total Harmonic Distortion Total Harmonic Distortion <br> $\mathrm{V}_{\mathrm{w}}$ Settling Time <br> Resistor Noise Voltage <br> Crosstalk ( $\mathrm{C}_{\mathrm{W} 1} / \mathrm{C}_{\mathrm{W} 2}$ ) <br> Analog Crosstalk ( $\mathrm{C}_{\mathrm{W} 1} / \mathrm{C}_{\mathrm{W} 2}$ ) | $\begin{aligned} & \mathrm{BW} \\ & \mathrm{THD}_{\mathrm{w}} \\ & \mathrm{THD}_{\mathrm{W}} \\ & \mathrm{t}_{\mathrm{S}} \\ & \\ & \mathrm{e}_{\mathrm{N}^{\mathrm{WBB}}} \\ & \mathrm{C}_{\mathrm{T}} \\ & \\ & \mathrm{C}_{\mathrm{TA}} \end{aligned}$ | $-3 \mathrm{~dB}, \mathrm{R}_{\mathrm{AB}}=10 \mathrm{k} \Omega / 50 \mathrm{k} \Omega / 100 \mathrm{k} \Omega$ <br> $\mathrm{V}_{\mathrm{A}}=1 \mathrm{Vrms}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{AB}}=10 \mathrm{k} \Omega$ <br> $\mathrm{V}_{\mathrm{A}}=1 \mathrm{Vrms}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{AB}}=50 \mathrm{k} \Omega$, <br> $100 \mathrm{k} \Omega$ <br> $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=0.50 \%$ error band, <br> Code $000_{\mathrm{H}}$ to $200_{\mathrm{H}}$ for $\mathrm{R}_{\mathrm{AB}}=10 \mathrm{k} \Omega / 50 \mathrm{k} \Omega / 100 \mathrm{k} \Omega$ <br> $\mathrm{R}_{\mathrm{WB}}=5 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}$ <br> $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}$, Measure $\mathrm{V}_{\mathrm{W}}$ with Adjacent <br> RDAC Making Full-Scale Code Change <br> $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{A} 1}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{B} 1}=-2.5 \mathrm{~V}$, <br> Measure $\mathrm{V}_{\mathrm{W} 1}$ with $\mathrm{V}_{\mathrm{W} 2}=5 \mathrm{~V} \mathrm{p}-\mathrm{p} @ \mathrm{f}=10 \mathrm{kHz}$, <br> Code $1=20_{\mathrm{H}}$, Code $2=3 \mathrm{~F}_{\mathrm{H}}, \mathrm{R}_{\mathrm{AB}}=10 \mathrm{k} \Omega / 50 \mathrm{k} \Omega / 100 \mathrm{k} \Omega$ |  | $\begin{aligned} & 630 / 130 / 66 \\ & 0.04 \\ & 0.015 \\ & \\ & 0.6 / 2.2 / 3.8 \\ & 9 \\ & -1 \\ & \\ & -86 /-73 /-68 \end{aligned}$ |  | $\begin{aligned} & \mathrm{kHz} \\ & \% \\ & \% \\ & \\ & \mu \mathrm{~s} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV}-\mathrm{s} \\ & \\ & \mathrm{~dB} \end{aligned}$ |
| INTERFACE TIMING CHARACTERI <br> Clock Cycle Time ( $\mathrm{t}_{\mathrm{Cyc}}$ ) <br> $\overline{\mathrm{CS}}$ Setup Time CLK Shutdown Time to $\overline{\mathrm{CS}}$ Rise Input Clock Pulsewidth Data Setup Time Data Hold Time $\overline{\mathrm{CS}}$ to SDO-SPI Line Acquire $\overline{\mathrm{CS}}$ to SDO-SPI Line Release CLK to SDO Propagation Delay ${ }^{11}$ CLK to SDO Data Hold Time $\overline{\mathrm{CS}}$ High Pulsewidth ${ }^{12}$ $\overline{\mathrm{CS}}$ High to $\overline{\mathrm{CS}} \mathrm{High}^{12}$ RDY Rise to $\overline{\mathrm{CS}}$ Fall $\overline{\mathrm{CS}}$ Rise to RDY Fall Time Read/Store to Nonvolatile EEMEM ${ }^{13}$ $\overline{\mathrm{CS}}$ Rise to Clock Rise/Fall Setup Preset Pulsewidth (Asynchronous) Preset Response Time to RDY High | $\mathrm{t}_{1}$ <br> $\mathrm{t}_{2}$ <br> $t_{3}$ <br> $\mathrm{t}_{4}, \mathrm{t}_{5}$ <br> $\mathrm{t}_{6}$ <br> $\mathrm{t}_{7}$ <br> $\mathrm{t}_{8}$ <br> $\mathrm{t}_{9}$ <br> $\mathrm{t}_{10}$ <br> $\mathrm{t}_{11}$ <br> $\mathrm{t}_{12}$ <br> $t_{13}$ <br> $\mathrm{t}_{14}$ <br> $t_{15}$ <br> $t_{16}$ <br> $t_{17}$ <br> $\mathrm{t}_{\text {PRW }}$ <br> $t_{\text {PRESP }}$ | plies to all parts) ${ }^{5,10}$ <br> Clock Level High or Low <br> From Positive CLK Transition <br> From Positive CLK Transition <br> $\mathrm{R}_{\mathrm{P}}=2.2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<20 \mathrm{pF}$ $\mathrm{R}_{\mathrm{P}}=2.2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<20 \mathrm{pF}$ <br> Applies to Command $2_{H}, 3_{H}, 9_{\mathrm{H}}$ <br> Not Shown in Timing Diagram <br> $\overline{\mathrm{PR}}$ Pulsed Low to Refreshed Wiper Positions | $\begin{aligned} & 20 \\ & 10 \\ & 1 \\ & 10 \\ & 5 \\ & 5 \\ & \\ & \\ & 0 \\ & 10 \\ & 4 \\ & 0 \\ & \\ & 10 \\ & 50 \end{aligned}$ | 0.1 70 | $\begin{aligned} & 40 \\ & 50 \\ & 50 \\ & \\ & \\ & 0.15 \\ & 25 \end{aligned}$ | ns <br> ns <br> $\mathrm{t}_{\mathrm{CYC}}$ <br> ns <br> $\mathrm{t}_{\mathrm{CYC}}$ <br> ns <br> ms <br> ms <br> ns <br> ns <br> $\mu \mathrm{s}$ |
| FLASH/EE MEMORY RELIABILITY <br> Endurance ${ }^{14}$ <br> Data Retention ${ }^{15}$ |  |  | 100 | 100 |  | K Cycles <br> Years |

## NOTES

${ }^{1}$ Typicals represent average readings at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.
${ }^{2}$ Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. $\mathrm{I}_{\mathrm{W}} \cong 50 \mu \mathrm{~A} @ \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ for the $\mathrm{R}_{\mathrm{AB}}=10 \mathrm{k} \Omega$ version, $\mathrm{I}_{\mathrm{W}} \cong 50 \mu \mathrm{~A}$ for the $R_{A B}=50 \mathrm{k} \Omega$ and $I_{W} \cong 25 \mu \mathrm{~A}$ for the $\mathrm{R}_{\mathrm{AB}}=100 \mathrm{k} \Omega$ version. See Test Circuit 1 .
${ }^{3} \mathrm{INL}$ and DNL are measured at $\mathrm{V}_{\mathrm{w}}$ with the RDAC configured as a potentiometer divider similar to a voltage output $\mathrm{D} / \mathrm{A}$ converter. $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{SS}} . \mathrm{DNL}$ specification limits of -1 LSB minimum are Guaranteed Monotonic operating conditions. See Test Circuit 2.
${ }^{4}$ Resistor terminals A, B, and W have no limitations on polarity with respect to each other. Dual Supply Operation enables ground referenced bipolar signal adjustment.
${ }^{5}$ Guaranteed by design and not subject to production test.
${ }^{6}$ Common mode leakage current is a measure of the DC leakage from any terminal B and W to a common mode bias level of $\mathrm{V}_{\mathrm{DD}} / 2$.
${ }^{7}$ Transfer (XFR) Mode current is not continuous. Current consumed while EEMEM locations are read and transferred to the RDAC register. See TPC 19.
${ }^{8} \mathrm{P}_{\text {DISS }}$ is calculated from $\left(\mathrm{I}_{\mathrm{DD}} \times \mathrm{V}_{\mathrm{DD}}\right)+\left(\mathrm{I}_{\mathrm{SS}} \times \mathrm{V}_{\mathrm{SS}}\right)$
${ }^{9}$ All dynamic characteristics use $\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{SS}}=-2.5 \mathrm{~V}$
${ }^{10}$ See timing diagram for location of measured values. All input control voltages are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}(10 \%$ to $90 \%$ of 3 V$)$ and timed from a voltage level of 1.5 V . Switching characteristics are measured using both $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ and 5 V .
${ }^{11}$ Propagation delay depends on value of $\mathrm{V}_{\mathrm{DD}}, \mathrm{R}_{\text {PULL_UP }}$, and $\mathrm{C}_{\mathrm{L}}$ see applications text.
${ }^{12}$ Valid for commands that do not activate the RDY pin.
${ }^{13}$ RDY pin low only for commands $2,3,8,9,10$, and the $\overline{\mathrm{PR}}$ hardware pulse: CMD_8 $\cong 1 \mathrm{~ms} ; \mathrm{CMD} \_9,10 \cong 0.12 \mathrm{~ms}$; CMD_2, $3 \cong 20 \mathrm{~ms}$. Device operation at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}<3 \mathrm{~V}$ extends the save time to 35 ms .
${ }^{14}$ Endurance is qualified to 100,000 cycles as per JEDEC Std. 22 , Method A117 and measured at $-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$, typical endurance at $25^{\circ} \mathrm{C}$ is 700,000 cycles.
${ }^{15}$ Retention lifetime equivalent at junction temperature $\left(T_{\mathrm{J}}\right)=55^{\circ} \mathrm{C}$ as per JEDEC Std. 22, Method A117. Retention lifetime based on an activation energy of 0.6 V will derate with junction temperature as shown in Figure 11 in the Flash/EE Memory description section of this data sheet. The AD5233 contains 9,646 transistors. Die size: 69 mil $\times 115$ mil, 7,993 sq. mil.

Specifications subject to change without notice.


Figure 2a. CPHA = 1 Timing Diagram


Figure 2b. CPHA $=0$ Timing Diagram

| ABSOLUTE MAXIMUM RATINGS ${ }^{1}$ |  |
| :---: | :---: |
| ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.) |  |
| $\mathrm{V}_{\mathrm{DD}}$ to GND | $-0.3 \mathrm{~V},+7 \mathrm{~V}$ |
| $\mathrm{V}_{\text {Ss }}$ to GND | +0.3 V, -7 V |
| $\mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{\text {SS }}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V |  |
| $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{W}}$ to GND $\ldots \ldots . . . . . . . . ~ V_{\mathrm{SS}}-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ |  |
| A-B, A-W, B-W, |  |
| Intermittent ${ }^{2}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 20 \mathrm{~mA}$ |  |
| Continuous ................................. $\pm 2 \mathrm{~mA}$ |  |
| Digital Inputs and Output Voltage to GND . $-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ |  |
| Operating Temperature Range ${ }^{3}$. . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |
| Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}} \mathrm{Max}$ ) . . . . . . . . $150^{\circ} \mathrm{C}$ |  |
| Storage Temperature . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |  |
| Lead Temperature, Soldering |  |
| Vapor Phase (60 sec) | $215^{\circ} \mathrm{C}$ |
| Infrared (15 sec) | $220^{\circ} \mathrm{C}$ |


| Thermal Resistance Junction-to-Ambient $\theta_{\mathrm{JA}}$, TSSOP-24 | $128^{\circ} \mathrm{C} / \mathrm{W}$ |
| :---: | :---: |
| Thermal Resistance Junction-to-Case $\theta_{\mathrm{JC}}$, |  |
| TSSOP-24 | $28^{\circ} \mathrm{C} / \mathrm{W}$ |
| Package Power Dissipation $=\left(\mathrm{T}_{\mathrm{J}} \mathrm{Max}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{J}}$ |  |

NOTES
${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the $A, B$, and $W$ terminals at a given resistance.
${ }^{3}$ Includes programming of nonvolatile memory.

ORDERING GUIDE

| Model | Number of <br> Channels | $\mathbf{R}_{\mathbf{A B}}$ <br> $(\mathbf{k} \boldsymbol{\Omega})$ | Temperature <br> Range | Package <br> Description | Package <br> Option | Ordering <br> Quantity | Top Mark* |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AD5233BRU10 | 4 | 10 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | TSSOP-24 | RU-24 | 96 | 5233 B 10 |
| AD5233BRU10-REEL7 | 4 | 10 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | TSSOP-24 | RU-24 | 1,000 | 5233 B 10 |
| AD5233BRU50 | 4 | 50 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | TSSOP-24 | RU-24 | 96 | 5233 B 50 |
| AD5233BRU50-REEL7 | 4 | 50 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | TSSOP-24 | RU-24 | 1,000 | 5233 B 50 |
| AD5233BRU100 | 4 | 100 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | TSSOP-24 | RU-24 | 96 | 5233 BC |
| AD5233BRU100-REEL7 | 4 | 100 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | TSSOP-24 | RU-24 | 1,000 | 5233 BC |

*Line 1 contains ADI logo symbol and the date code YYWW, line 2 contains detail model number listed in this column.

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5233 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.


## PIN CONFIGURATION

| 011 | $\left\{\begin{array}{c} \text { AD5233 } \\ \text { TOP VIEW } \\ \text { (Not to Scale) } \end{array}\right.$ | 2402 |
| :---: | :---: | :---: |
| CLK 2 |  | 23 RDY |
| SDI 3 |  | 22 CS |
| SDO 4 |  | ${ }^{21} \overline{\mathrm{PR}}$ |
| GND 5 |  | 20 WP |
| $\mathrm{V}_{\text {SS }} 6$ |  | 19 VDD |
| A1 7 |  | 18 A4 |
| W1 8 |  | 17 W 4 |
| B1 9 |  | 16 B4 |
| A2 10 |  |  |
| W2 11 |  | 14 W3 |
| B2 12 |  |  |

PIN FUNCTION DESCRIPTIONS

| Pin No. | Mnemonic | Description |
| :---: | :---: | :---: |
| 1 | O1 | Nonvolatile Digital Output \#1. Address $(\mathrm{O} 1)=4_{\mathrm{H}}$, data bit position D0, Defaults to logic 1 initially. |
| 2 | CLK | Serial Input Register Clock Pin. Shifts in one bit at a time on positive clock edges. |
| 3 | SDI | Serial Data Input Pin. Shifts in one bit at a time on positive clock CLK edges. MSB loaded first. |
| 4 | SDO | Serial Data Output Pin. Open Drain Output requires external pull-up resistor. Commands 9 and 10 activate the SDO output. See Table III, Instruction Operation Truth Table. Other commands shift out the previously loaded SDI bit pattern delayed by 16 clock pulses. This allows daisy-chain operation of multiple packages. |
| 5 | GND | Ground Pin, Logic Ground Reference |
| 6 | $\mathrm{V}_{\text {SS }}$ | Negative Supply. Connect to 0 V for single supply applications. |
| 7 | A1 | A Terminal of RDAC1 |
| 8 | W1 | Wiper Terminal of RDAC1, address(RDAC1) $=0_{\mathrm{H}}$ |
| 9 | B1 | B Terminal of RDAC1 |
| 10 | A2 | A Terminal of RDAC2 |
| 11 | W2 | Wiper Terminal of RDAC2, address (RDAC2) $=1_{\mathrm{H}}$ |
| 12 | B2 | B Terminal of RDAC2 |
| 13 | B3 | B Terminal of RDAC3 |
| 14 | W3 | Wiper Terminal of RDAC3, address $($ RDAC 3$)=2_{\mathrm{H}}$ |
| 15 | A3 | A Terminal of RDAC3 |
| 16 | B4 | B Terminal of RDAC4 |
| 17 | W4 | Wiper Terminal of RDAC4, address (RDAC4) $=3_{\mathrm{H}}$ |
| 18 | A4 | A Terminal of RDAC4 |
| 19 | $\mathrm{V}_{\mathrm{DD}}$ | Positive Power Supply Pin |
| 20 | $\overline{\mathrm{WP}}$ | Write Protect Pin. When active low, $\overline{\mathrm{WP}}$ prevents any changes to the present contents except $\overline{\mathrm{PR}}$ strobe, CMD_1, and CMD_8 will refresh the RDAC register from EEMEM. Execute a NOP instruction before returning to $\overline{\mathrm{WP}}$ high. |
| 21 | $\overline{\mathrm{PR}}$ | Hardware Override Preset Pin. Refreshes the scratch pad register with current contents of the EEMEM register. Factory default loads midscale $32_{10}$ until EEMEM loaded with a new value by the user $\overline{\mathrm{PR}}$ is activated at the logic high transition). |
| 22 | $\overline{\mathrm{CS}}$ | Serial Register Chip Select Active Low. Serial register operation takes place when $\overline{\mathrm{CS}}$ returns to logic high. |
| 23 | RDY | Ready. Active high open drain output. Identifies completion of commands $2,3,8,9,10$, and $\overline{\mathrm{PR}}$. |
| 24 | O 2 | Nonvolatile Digital Output \#2. Address $(\mathrm{O} 2)=4_{H}$, data bit position D1, Defaults to logic 1 initially. |

Typical Performance Characteristics-AD5233


TPC 1. INL vs. Code, $T_{A}=-40^{\circ} \mathrm{C}$, $+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ Overlay, $R_{A B}=10 \mathrm{k} \Omega$


TPC 4. R-DNL vs. Code, $T_{A}=-40^{\circ} \mathrm{C}$, $+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ Overlay, $R_{A B}=10 \mathrm{k} \Omega$


TPC 7. Wiper On-Resistance vs. Code


TPC 2. $D N L$ vs. Code, $T_{A}=-40^{\circ} \mathrm{C}$, $+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ Overlay, $R_{A B}=10 \mathrm{k} \Omega$


TPC 5. $\Delta R_{\text {WB }} / \Delta T$ vs. Code, $R_{A B}=10 \mathrm{k} \Omega$


TPC 8. I $I_{D D}$ vs. Temperature, $R_{A B}=10 \mathrm{k} \Omega$


TPC 3. $R$-INL vs. Code, $T_{A}=-40^{\circ} \mathrm{C}$, $+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ Overlay, $R_{A B}=10 \mathrm{k} \Omega$


TPC 6. $\Delta V_{W B} / \Delta T$ vs. Code, $R_{A B}=10 \mathrm{k} \Omega$


TPC 9. I ${ }_{D D}$ vs. Clock Frequency, $R_{A B}=10 \mathrm{k} \Omega$


TPC 10. $-3 d B$ Bandwidth vs. Resistance. Test Circuit 7.


TPC 13. Gain vs. Frequency vs. Code, $R_{A B}=50 k \Omega$. Test Circuit 7.


TPC 16. Power-On Reset, $V_{A}=2.25 \mathrm{~V}$, Code $=101010_{B}$


TPC 11. Total Harmonic Distortion vs. Frequency


TPC 14. Gain vs. Frequency vs. Code, $R_{A B}=100 \mathrm{k} \Omega$. Test Circuit 7.


TPC 17. Midscale Glitch Energy, Code $20_{H}$ to $1 F_{H}$


TPC 12. Gain vs. Frequency vs. Code, $R_{A B}=10 \Omega$. Test Circuit 7 .


TPC 15. PSRR vs. Frequency


TPC 18. I $I_{D D}$ vs. Time (Save) Program Mode

*SUPPLY CURRENT RETURNSTO MINIMUM POWER CONSUMPTION IF INSTRUCTION \#0 (NOP) IS EXECUTED IMMEDIATELY AFTER INSTRUCTION \#1 (READ EEMEM)

TPC 19. I $I_{D D}$ vs. Time (Read) Program Mode


TPC 20. I MAX vs. Code

## TEST CIRCUITS

Test Circuits 1 to 10 define the test conditions used in the product specification's table.


Test Circuit 1. Resistor Position Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)


Test Circuit 2. Potentiometer Divider Nonlinearity Error (INL, DNL)


Test Circuit 3. Wiper Resistance


Test Circuit 4. Power Supply Sensitivity (PSS, PSRR)


Test Circuit 5. Inverting Gain


Test Circuit 6. Noninverting Gain


Test Circuit 7. Gain vs. Frequency


Test Circuit 8. Incremental ON Resistance

## TEST CIRCUITS (continued)



Test Circuit 9. Common-Mode Leakage Current


Test Circuit 10. Analog Crosstalk

## OPERATIONAL OVERVIEW

The AD5233 digital potentiometer is designed to operate as a true variable resistor replacement device for analog signals that remain within the terminal voltage range of $\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\text {TERM }}<\mathrm{V}_{\mathrm{DD}}$. The basic voltage range is limited to a $\left|\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right|<5.5 \mathrm{~V}$. The digital potentiometer wiper position is determined by the RDAC register contents. The RDAC register acts as a scratch pad register allowing as many value changes as necessary to place the potentiometer wiper in the correct position. The scratch pad register can be programmed with any position value using the standard SPI serial interface mode by loading the complete representative data word. Once a desirable position is determined this value can be saved into a EEMEM register. Thereafter the wiper position will always be set at that position for any future ON-OFF-ON power supply sequence. The EEMEM save process takes approximately 25 ms , during this time the shift register is locked preventing any changes from taking place. The RDY pin indicates the completion of this EEMEM save.
There are 16 instructions which facilitates users' programming needs, (refer to Table III). The instructions are:
0 . Do nothing

1. Restore EEMEM setting to RDAC
2. Save RDAC setting to EEMEM
3. Save user data or RDAC setting to EEMEM
4. Decrement 6 dB
5. Decrement all 6 dB
6. Decrement one step
7. Decrement all one step
8. Reset EEMEM setting to RDAC
9. Read EEMEM to SDO
10. Read Wiper Setting to SDO
11. Write data to RDAC
12. Increment 6 dB
13. Increment all 6 dB
14. Increment one step
15. Increment all one step

## Scratch Pad and EEMEM Programming

The scratch pad register (RDAC register) directly controls the position of the digital potentiometer wiper. When the scratch pad register is loaded with all zeros the wiper will be connected to the B-Terminal of the variable resistor. When the scratch pad register is loaded with midscale code (one-half of full-scale position) the wiper will be connected to the middle of the variable resistor. And when the scratch pad is loaded with full-scale code, all one's, the wiper will connect to the A-Terminal. Since the scratch pad register is a standard logic register, there is no restriction on the number of changes allowed. The EEMEM registers have a program erase/write cycle limitation described in the Flash/EEMEM Reliability section.

## Basic Operation

The basic mode of setting the variable resistor wiper position (programming the scratch pad register) is accomplished by loading the serial data input register with the command instruction \#11, which includes the desired wiper position data. When the desired wiper position is determined, the user may load the serial data input register with the command instruction \#2, which makes a copy of the desired wiper position data into the nonvolatile EEMEM register. After 25 ms the wiper position will be permanently stored in the nonvolatile EEMEM location. Table I provides an application-programming example listing the sequence of serial data input (SDI) words and the serial data output appearing at the SDO pin in hexadecimal format.

Table I. Set and Save RDAC data to EEMEM Register

| SDI | SDO | Action |
| :--- | :--- | :--- |
| $\mathrm{B} 010_{\mathrm{H}}$ | $\mathrm{XXXX}_{\mathrm{H}}$ | Loads data $10_{\mathrm{H}}$ into RDAC1 <br> register, Wiper W1 moves to $1 / 4$ <br> full-scale position. |
| $20 \mathrm{xx}_{\mathrm{H}}$ | $\mathrm{B} 010_{\mathrm{H}}$ | Saves copy of RDAC1 register <br> contents into EEMEM1 register. |

At system power ON, the scratch pad register is automatically refreshed with the value last saved in the EEMEM register. The factory preset EEMEM value is midscale but thereafter, the EEMEM value can be changed by user.
During operation, the scratch pad (wiper) register can also be refreshed with the current contents of the nonvolatile EEMEM register under hardware control by pulsing the $\overline{\mathrm{PR}}$ pin without activating instruction 1 or 8 . Beware that the $\overline{\mathrm{PR}}$ pulse first sets the wiper at midscale when brought to logic zero, and then on the positive transition to logic high, it reloads the RDAC wiper register with the contents of EEMEM. Many additional advanced programming commands are available to simplify the variable resistor adjustment process (see Table III). For example, the wiper position can be changed one step at a time by using the Increment/Decrement instruction or by 6 dB at a time with the Shift Left/Right instruction command. Once an Increment, Decrement or Shift command has been loaded into the shift register, subsequent $\overline{\mathrm{CS}}$ strobes will repeat this command. This is useful for push button control applications. See the advanced control modes section following the Instruction Operation Truth Table. A serial data output SDO pin is available for daisy chaining and for readout of the internal register contents. The serial input data register uses a 24 -bit [instruction/address/data] WORD format.

## EEMEM Protection

Write protect ( $\overline{\mathrm{WP}}$ ) disables any changes of the scratch pad register contents regardless of the software commands, except that the EEMEM setting can be refreshed and overwrite $\overline{\mathrm{WP}}$ by using commands 8 and $\overline{\mathrm{PR}}$. pulse. Therefore, the write-protect (WP) pin provides a hardware EEMEM protection feature. To disable $\overline{\mathrm{WP}}$, it is recommended to execute a NOP command before returning $\overline{\mathrm{WP}}$ to logic high.

## Digital Input/Output Configuration

All digital inputs are ESD protected high input impedance that can be driven directly from most digital sources. Active at logic low, $\overline{\mathrm{PR}}$ and $\overline{\mathrm{WP}}$ must be biased to $\mathrm{V}_{\mathrm{DD}}$ if they are not used. There are no internal pull-up resistors present on any digital input pins. Since the device may be detached from the driving source once it is programmed, adding pull-up resistance in the digital input pins is a good way to avoid falsely triggering the floating pins in a noisy environment.
The SDO and RDY pins are open drain digital outputs where pullup resistors are needed only if using these functions. A resistor value in the range of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ is a proper choice which balances the power and switching speed trade off.

## Serial Data Interface

The AD5233 contains a four-wire SPI-compatible digital interface (SDI, SDO, $\overline{\mathrm{CS}}$, and CLK). The AD5233 uses a 16-bit serial data word loaded MSB first. The format of the SPI-compatible word is shown in Table II. The chip select $\overline{\mathrm{CS}}$ pin needs to be held low until the complete data word is loaded into the SDI pin. When $\overline{\mathrm{CS}}$ returns high, the serial data word is decoded according to the instructions in Table III. The Command Bits (Cx) control the operation of the digital potentiometer. The Address Bits ( Ax ) determine which register is activated. The Data Bits ( Dx ) are the values that are loaded into the decoded register. To program RDAC 1-4, only the 6 LSB databits are used. Table V provides an address map of the EEMEM locations. The last instruction executed prior to a period of no programming activity should be the No Operation (NOP) instruction 0 . This will place the internal logic circuitry in a minimum power dissipation state.


Figure 3. Equivalent Digital Input-Output Logic
The equivalent serial data input and output logic is shown in Figure 3. The open drain output SDO is disabled whenever chip select $\overline{\mathrm{CS}}$ is logic high. The SPI interface can be used in two slave modes $\mathrm{CPHA}=1, \mathrm{CPOL}=1$, and $\mathrm{CPHA}=0, \mathrm{CPOL}=0 . \mathrm{CPHA}$, and CPOL refer to the control bits, which dictate SPI timing in
these MicroConverter ${ }^{\circledR}$ s and microprocessors: $\mathrm{ADuC812/824}$, M68HC11, and MC68HC16R1/916R1. ESD protection of the digital inputs is shown in Figures 4a and 4b.


Figure 4a. Equivalent ESD Digital Input Protection


Figure 4b. Equivalent $\overline{W P}$ Input Protection

## Daisy-Chain Operation

The serial data output pin (SDO) serves two purposes. It can be used to read out the contents of the wiper setting and EEMEM values using instructions 10 and 9 respectively. The remaining 14 instructions (\#0-\#8, \#11-\#15) are valid for daisy chaining multiple devices in simultaneous operations. Daisy chaining minimizes the number of port pins required from the controlling IC (see Figure 5). The SDO pin contains an open drain $\mathrm{N}-\mathrm{Ch}$ FET that requires a pull-up resistor, if this function is used. As shown in Figure 5, users need to tie the SDO pin of one package to the SDI pin of the next package. Users may need to increase the clock period because the pull-up resistor and the capacitive loading at the SDO-SDI interface may require an additional time delay between subsequent packages. When two AD5233s are daisy chained 32 bits of data are required. The first 16 bits go to U2 and the second 16 bits go to U 1 . The 16 bits are formatted to contain the 4 -bit instruction, followed by the 4 -bit address, then 8 -bits of data. The $\overline{\mathrm{CS}}$ should be kept low until all 32 bits are clocked into their respective serial registers. The $\overline{\mathrm{CS}}$ is then pulled high to complete the operation.


Figure 5. Daisy Chain Configuration Using SDO

Table II. 16-Bit Serial Data Word

|  | MSB |  | Instruction Byte |  |  |  |  |  | LSB Data Byte |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RDAC | C3 | C2 | C1 | C 0 * | 0 | 0 | A1 | A0 | X | X | D5 | D4 | D3 | D2 | D1 | D0 |
| EEMEM | C3 | C2 | C1 | C0 | A3 | A2 | A1 | A0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |

${ }^{*}$ Command bits are C 0 to C 3 . Address bits are A3-A0. Data bits D0 to D5 are applicable to RDAC wiper register whereas D0 to D7 are applicable to EEMEM register. Command instruction codes are defined in Table III.

Table III. Instruction Operation Truth Table ${ }^{1,2,3}$

|  | Instruction Byte 0 |  |  |  |  |  |  |  | Data Byte 0 |  |  |  |  |  |  |  | Operation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inst. | B16 | $6 \ldots$ | .... | ..... |  |  | .... |  |  |  | B5 | B4 | B3 | B2 |  |  |  |
| No. |  | C2 | C1 | C0 | A3 | A2 | A1 | A0 | D7 | D6 | D5 | D4 | D3 | D2 |  | D0 |  |
| 0 |  | 0 | 0 | 0 | X | X | X | X |  |  |  |  |  | X |  | X | NOP: Do Nothing. See Table X for programming example. |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | A1 | A0 |  |  |  |  |  | X |  | X | Write content of EEMEM to RDAC Register. This command leaves device in the Read Program power state. To return part to the idle state, perform NOP instruction \#0. See Table X. |
| 2 | 0 | 0 | 1 | 0 | 0 | 0 | A1 | A0 |  |  |  |  | X | X |  | X | SAVE WIPER SETTING: Write contents of RDAC at address A1 A0 to EEMEM. See Table IX. |
| $3^{4}$ | 0 | 0 | 1 | 1 | A3 | A2 | A1 | A0 |  | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Write contents of Serial Register Data Byte 0 (total 8-bit) to EEMEM(ADDR). See Table XII. |
| $4^{5}$ | 0 | 1 | 0 | 0 | 0 | 0 | A1 | AO |  |  |  |  |  | X |  | X | Decrement 6 dB : Right Shift contents of RDAC Register, stops at all "Zeros." |
| $5^{5}$ | 0 | 1 | 0 | 1 | X | X | X | X | X |  |  |  | X | X |  | X | Decrement all 6 dB : Right Shift contents of all RDAC Registers, stops at all "Zeros." |
| $6^{5}$ | 0 | 1 | 1 | 0 | 0 | 0 | A1 | A0 | X |  |  |  |  | X |  | X | Decrement content of RDAC Register by "One," stops at all "Zero." |
| $7^{5}$ | 0 | 1 | 1 | 1 | X | X | X | X | X | X | X |  | X | X |  | X | Decrement contents of all RDAC Registers by "One," stops at all "Zero." |
| 8 |  | 0 | 0 | 0 | X | X | X | X |  |  |  |  |  | X |  | X | RESET: Load all RDACs with their corresponding EEMEM previously-saved values |
| 9 |  | 0 | 0 | 1 | A3 | A2 | A1 | A0 |  |  |  |  | X | X |  | X | Transfer content of EEMEM(ADDR) to Serial Register Data Byte 0 and previously stored data can be read out from SDO pin. See Table XIII. |
| 10 | 1 | 0 | 1 | 0 | 0 | 0 | A1 | A0 | X | X | X |  | X | X |  | X | Transfer content of RDAC (ADDR) to Serial Register Data Byte 0 and wiper setting can be read out from SDO pin. See Table XIV. |
| 11 |  | 0 | 1 | 1 | 0 | 0 | A1 | A0 |  |  |  |  | D3 |  |  | D0 | Write content of Serial Register Data Byte 0 (total 6-bit) to RDAC. See Table VIII. |
| $12^{5}$ |  | 1 | 0 | 0 | 0 | 0 | A1 | A0 | X |  | X |  | X | X |  | X | Increment 6 dB : Left Shift content of RDAC Register, stops at all "Ones." See Table XI. |
| $13^{5}$ |  | 1 | 0 | 1 | X | X | X | X |  |  |  |  |  | X |  | X | Increment all 6 dB : Left Shift contents of RDAC Registers, stops at all "Ones." |
| $14^{5}$ |  | 1 | 1 | 0 | 0 | 0 | A1 | A0 |  |  |  |  | X | X |  | X | Increment content of RDAC Register by "One," stops at all "Ones." See Table IX. |
| $15^{5}$ |  | 1 | 1 | 1 | X | X | X | X |  |  |  |  |  | X |  | X | Increment contents of all RDAC Registers by "One," stops at all "Ones." |
| NOTES |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{1}$ The \#10, <br> ${ }^{2}$ The R <br> ${ }^{3}$ Execu <br> ${ }^{4}$ Instru <br> ${ }^{5}$ The in | DO ou see det DAC tion of ction creme | utput tails of regist f the ab \#3 writ nt, de | shifts f these er is a above ite one ecreme | out the instru volatil Operat data ent and | last uction ile scra ations byte d shift |  | bits of da proper u pad regis place w it data) to mmands | ata clo usage. ister t when to EEM ignor | cked int <br> at is aut <br> CS s <br> IEM. B <br> the con | o the s <br> tomati <br> trobe But in the <br> ntents | serial <br> ically r <br> return <br> the cas <br> of the | registe <br> refresh <br> s to lo <br> ses of <br> shift | er for <br> hed at <br> gic h <br> addre <br> regist | daisy <br> pow high. <br> esses <br> ter D | chain <br> r ON <br> , 1, 2 <br> ta Byt | opera <br> from <br> 3 on <br> 0. | ion. Exception, any instruction that follows Instruction \#9 or he corresponding non-volatile EEMEM register. the last 6 bits are valid for wiper position setting. |

## Terminal Voltage Operation Range

The AD5233 positive $\mathrm{V}_{\mathrm{DD}}$ and negative $\mathrm{V}_{\text {SS }}$ power supply defines the boundary conditions for proper 3-terminal digital potentiometer operation. Supply signals present on terminals A, B, and W that exceed $V_{D D}$ or $V_{S S}$ will be clamped by the internal forward biased diodes (see Figure 6).


Figure 6. Maximum Terminal Voltages Set by $V_{D D}$ and $V_{S S}$ The ground pin of the AD5233 device is primarily used as a digital ground reference that needs to be tied to the PCB's common ground. The digital input control signals to the AD5233 must be referenced to the device ground pin (GND), and satisfy the logic level defined in the specification table of this data sheet. An internal level shift circuit ensures that the common-mode voltage range of the three-terminals extends from $V_{S S}$ to $V_{D D}$ regardless of the digital input level.

## Power Up Sequence

Since there are diodes to limit the voltage compliance at terminals $\mathrm{A}, \mathrm{B}$, and W (see Figure 6) it is important to power $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$ first before applying any voltages to terminals $\mathrm{A}, \mathrm{B}$, and W . Otherwise, the diode will be forward biased such that $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$ will be powered unintentionally. For example, applying 5 V across terminals A and $B$ prior to $\mathrm{V}_{\mathrm{DD}}$ will cause the $\mathrm{V}_{\mathrm{DD}}$ terminal to exhibit 4.3 V . It is not destructive to the device, but it may affect the rest of the user's system. As a result, the ideal power up sequence is in the following order: GND, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, Digital Inputs, and $\mathrm{V}_{\mathrm{A} / \mathrm{B} / \mathrm{W}}$. The order of powering $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{W}}$, and Digital Inputs is not important as long as they are powered after $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$.
Regardless of the power up sequence and the ramp rates of the power supplies, once $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$ are powered, the power-on reset remains effective, which retrieves EEMEM saved values to the RDAC registers.

## Latched Digital Outputs

A pair of digital outputs, O 1 and O 2 , are available on the AD 5233 that provide a nonvolatile logic 0 or logic 1 setting. O 1 and O 2 are standard CMOS logic outputs shown in Figure 7. These outputs are ideal to replace functions often provided by DIP switches. In addition, they can be used to drive other standard CMOS logic controlled parts that need an occasional setting change. O1 and O 2 , are defaulted to logic 1 initially.


Figure 7. Logic Outputs O 1 and O2.

## ADVANCED CONTROL MODES

The AD5233 digital potentiometer contains a set of user programming features to address the wide applications available to these universal adjustment devices. Key programming features include:

- Scratch Pad Programming to any desirable values
- Nonvolatile memory storage of the present scratch pad RDAC register value into the EEMEM register
- Increment and Decrement instructions for RDAC wiper register
- Left and right Bit Shift of RDAC wiper register to achieve 6 dB level changes
- Eleven extra bytes of user addressable nonvolatile memory


## Linear Increment and Decrement Commands

The increment and decrement commands (\#14, \#15, \#6, \#7) are useful for linear step adjustment applications. These commands simplify microcontroller software coding by allowing the controller to just send an increment or decrement command to the device. For the increment command, executing instruction \#14 with proper address will automatically move the wiper to the next resistance segment position. Instruction \#15 performs the same function except that address does not need to be specified. All RDACs are changed at the same time.

## Logarithmic Taper Mode Adjustment ( $\pm 6 \mathrm{~dB} /$ Step)

Four programming instructions produce logarithmic taper increment and decrement wiper. These settings are activated by the 6 dB increment and 6 dB decrement instructions \#12, \#13, \#4, and \#5 respectively. For example, starting at zero scale, executing eight increment instructions \#12 will move the wiper in 6 dB per step from the $0 \%$ to full scale $\mathrm{R}_{\mathrm{AB}}$. The 6 dB increment instruction doubles the value of the RDAC register content each time the command is executed. When the wiper position is near the maximum setting, the last 6 dB increment instruction causes the wiper to go to the full-scale $63_{10}$ code position. Further 6 dB per increment instruction will no longer change the wiper position beyond its full scale. 6 dB step increment and decrement are achieved by shifting the bit internally to the left and right respectively. The following information explains the nonideal $\pm 6 \mathrm{~dB}$ step adjustment at certain conditions. Table IV illustrates the operation of the shifting function on the RDAC register data bits. Each line going down the table represents a successive shift operation. Note that the left shift \#12 and \#13 commands were modified such that if the data in the RDAC register is equal to zero, and the data is left shifted, the RDAC register is then set
to code 1 . Similarly, if the data in the RDAC register is greater than or equal to mid-scale, and the data is left shifted, then the data in the RDAC register is automatically set to full-scale. This makes the left shift function as ideal logarithmic adjustment as is possible.
The right shift \#4 and \#5 commands will be ideal only if the LSB is zero (i.e. ideal logarithmic-no error). If the LSB is a one then the right shift function generates a linear half LSB error, which translates to a numbers of bits dependent logarithmic error as shown in Figure 8. The plot shows the error of the odd numbers of bits for AD5233.

Table IV. Detail Left and Right Shift Functions for 6 dB Step Increment and Decrement

|  | Left Shift | Right Shift |  |
| :---: | :---: | :---: | :---: |
|  | 000000 | 111111 |  |
|  | 000001 | 011111 |  |
|  | 000010 | 001111 |  |
| Left Shift | 000100 | 000111 | Right Shift |
| ( $+6 \mathrm{~dB} /$ Step) | 001000 | 000011 | ( $-6 \mathrm{~dB} /$ Step) |
|  | 010000 | 000001 |  |
|  | 100000 | 000000 |  |
|  | 111111 | 000000 |  |
| $\nabla$ | 111111 | 000000 | $\checkmark$ |

Actual conformance to a logarithmic curve between the data contents in the RDAC register and the wiper position for each Right Shift \#4 and \#5 command execution contains an error only for odd numbers of bits. Even numbers of bits are ideal. The graph in Figure 8 shows plots of Log_Error [i.e. $20 \times \log _{10}$ (error/code)] AD5233. For example, code $3 \log _{2}$ Error $=20 \times \log _{10}(0.5 / 3)=$ -15.56 dB , which is the worst case. The plot of Log_Error is more significant at the lower codes.


Figure 8. Plot of Log_Error Conformance for Odd Numbers of Bits Only (Even Numbers of Bits is Ideal)
The AD5233 contains additional internal user storage registers (EEMEM) for saving constants and other 8-bit data. Table V provides an address map of the internal storage registers shown in the functional block diagram as EEMEM1, EEMEM2, and 11 bytes of USER EEMEM.

Table V. EEMEM Address Map

| EEMEM Number | Address | EEMEM Content For |
| :---: | :---: | :---: |
| 1 | 0000 | RDAC $1^{1,2}$ |
| 2 | 0001 | RDAC2 $2^{1,2}$ |
| 3 | 0010 | RDAC3 ${ }^{1,2}$ |
| 4 | 0011 | RDAC4, ${ }^{1,2}$ |
| 5 | 0100 | O 1 and $\mathrm{O} 2^{3}$ |
| 6 | 0101 | USER1 ${ }^{4}$ |
| 7 | 0110 | USER2 |
| : | : | : |
| 15 | 1110 | USER10 |
| 16 | 1111 | USER11 |

## NOTES

${ }^{1}$ RDAC data stored in the EEMEM location is transferred to the RDAC REGISTER at Power ON , or when instructions Inst\#1, \#8, and $\overline{\mathrm{PR}}$ are executed.
${ }^{2}$ Execution of instruction \#1 leaves the device in the Read Mode power consumption state. After the last Instruction \#1 is executed, the user should perform a NOP, Instruction \#0 to return the device to the low power idling state. ${ }^{3} \mathrm{O} 1$ and O 2 data stored in EEMEM locations are transferred to their corresponding DIGITAL REGISTER at Power ON, or when instructions \#1 and \#8 are executed. ${ }^{4}$ USER <\#> are internal nonvolatile EEMEM registers available to store and retrieve constants and other 8-bit information using Inst\#3 and Inst\#9 respectively.

## RDAC STRUCTURE

The patent pending RDAC contains multiple strings of equal resistor segments, with an array of analog switches, that act as the wiper connection. The number of positions is the resolution of the device. The AD5233 has 64 connection points allowing it to provide better than $1.5 \%$ set ability resolution. Figure 9 shows an equivalent structure of the connections between the three terminals of the RDAC. The $\mathrm{SW}_{\mathrm{A}}$ and $\mathrm{SW}_{\mathrm{B}}$ will always be ON, while one of the switches $\operatorname{SW}(0)$ to $\mathrm{SW}\left(2^{\mathrm{N}}-1\right)$ will be ON one at a time depending on the resistance position decoded from the Data Bits. Since the switch is not ideal, there is a $15 \Omega$ wiper resistance, $\mathrm{R}_{\mathrm{W}}$. Wiper resistance is a function of supply voltage and temperature. The lower the supply voltage or the higher the temperature, the higher the resulting wiper resistance. Users should be aware of the wiper resistance dynamics if accurate prediction of the output resistance is needed.


Figure 9. Equivalent RDAC Structure (Patent Pending)

## PROGRAMMING THE VARIABLE RESISTOR RHEOSTAT OPERATION

The nominal resistance of the RDAC between terminals A-and-B, $\mathrm{R}_{\mathrm{AB}}$, are available with $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ with 64 positions (6-bit resolution). The final digit(s) of the part number determine the nominal resistance value, e.g., $10 \mathrm{k} \Omega=10 ; 50 \mathrm{k} \Omega=$ $50,100 \mathrm{k} \Omega=100$.
The 6-bit data word in the RDAC latch is decoded to select one of the 64 possible settings. The following discussion describes the calculation of resistance $R_{\mathrm{WB}}$ at different codes of a $10 \mathrm{k} \Omega$ part.
For $V_{D D}=5 \mathrm{~V}$, the wipers first connection starts at the B terminal for data $00_{\mathrm{H}} \cdot \mathrm{R}_{\mathrm{WB}}(0)$ is $15 \Omega$ because of the wiper resistance and it is independent to the nominal resistance. The second connection is the first tap point where $\mathrm{R}_{\mathrm{WB}}(1)$ becomes $156 \Omega+15 \Omega=171 \Omega$ for data $01_{\mathrm{H}}$. The third connection is the next tap point representing $\mathrm{R}_{\mathrm{WB}}(2)=312+15=327 \Omega$ for data $02_{\mathrm{H}}$ and so on. Each LSB data value increase moves the wiper up the resistor ladder until the last tap point is reached at $\mathrm{R}_{\mathrm{WB}}(63)=9858 \Omega$. See Figure 9 for a simplified diagram of the equivalent RDAC circuit. When $\mathrm{R}_{\mathrm{WB}}$ is used, the A-terminal can be let floating or tied to the wiper.


Figure 10. $R_{W A}(D)$ and $R_{W B}(D)$ vs. Decimal Code
The general equation, which determines the programmed output resistance between W and B , is:

$$
\begin{equation*}
R_{W B}(D)=\frac{D}{64} \times R_{A B}+R_{W} \tag{1}
\end{equation*}
$$

Where $D$ is the decimal equivalent of the data contained in the RDAC register, $R_{A B}$ is the Nominal Resistance between terminals A-and-B, and $\mathrm{R}_{\mathrm{W}}$ is the wiper resistance.
For example, the following output resistance values will be set for the following RDAC latch codes with $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ (applies to $\mathrm{R}_{\mathrm{AB}}=10 \mathrm{k} \Omega$ Digital Potentiometers):

Table VI. $\mathbf{R}_{\mathrm{WB}}(\mathrm{D})$ at Selected Codes for $\mathbf{R}_{\mathrm{AB}}=10 \mathrm{k} \Omega$

| $\mathbf{D}(\mathbf{D E C})$ | $\mathbf{R}_{\mathbf{W B}}(\mathbf{D})(\boldsymbol{\Omega})$ | Output State |
| :--- | :--- | :--- |
| 63 | 9858 | Full-scale |
| 32 | 5015 | Mid-scale |
| 1 | 171 | 1 LSB |
| 0 | 15 | Zero-scale <br> (Wiper contact resistance) |

Note that in the zero-scale condition a finite wiper resistance of $15 \Omega$ is present. Care should be taken to limit the current flow
between W and B in this state to no more than 20 mA to avoid degradation or possible destruction of the internal switches.
Like the mechanical potentiometer the RDAC replaces, the AD5233 parts are totally symmetrical. The resistance between the wiper W and terminal A also produces a digitally controlled complementary resistance $\mathrm{R}_{\mathrm{WA}}$. Figure 10 shows the symmetrical programmability of the various terminal connections. When $\mathrm{R}_{\mathrm{WA}}$ is used, the B -terminal can be let floating or tied to the wiper. Setting the resistance value for $\mathrm{R}_{\mathrm{WA}}$ starts at a maximum value of resistance and decreases as the data loaded in the latch is increased in value. The general transfer equation for this operation is:

$$
\begin{equation*}
R_{W A}(D)=\frac{64-D}{64} \times R_{A B}+R_{W} \tag{2}
\end{equation*}
$$

For example, the following output resistance values will be set for the following RDAC latch codes with $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ (applies to $\mathrm{R}_{\mathrm{AB}}=10 \mathrm{k} \Omega$ Digital Potentiometers):

Table VII. $\mathbf{R}_{\mathrm{WA}}(\mathrm{D})$ at Selected Codes for $\mathrm{R}_{\mathrm{AB}}=10 \mathrm{k} \Omega$

| $\mathbf{D}(\mathbf{D E C})$ | $\mathbf{R}_{\mathbf{W A}}(\mathbf{D})(\boldsymbol{\Omega})$ | Output State |
| :--- | :--- | :--- |
| 63 | 171 | Full-scale |
| 32 | 5015 | Mid-scale |
| 1 | 9858 | 1 LSB |
| 0 | 10015 | Zero-scale |

Channel-to-channel $\mathrm{R}_{\mathrm{AB}}$ matching is better than $1 \%$. The change in $\mathrm{R}_{\mathrm{AB}}$ with temperature has a $600 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient.

## PROGRAMMING THE POTENTIOMETER DIVIDER

## Voltage Output Operation

The digital potentiometer can be configured to generate an output voltage at the wiper terminal which is proportional to the input voltages applied to terminals A and B. For example connecting A-terminal to 5 V and B-terminal to ground produces an output voltage at the wiper which can be any value starting at 0 V up to 5 V . Each LSB of voltage is equal to the voltage applied across terminal AB divided by the $2^{\mathrm{N}}$ position resolution of the potentiometer divider.
Since AD5233 can also be supplied by dual supplies, the general equation defining the output voltage at $\mathrm{V}_{\mathrm{w}}$ with respect to ground for any given input voltages applied to terminals $A$ and $B$ is:

$$
\begin{equation*}
V_{W}(D)=\frac{D}{64} \times V_{A B}+V_{B} \tag{3}
\end{equation*}
$$

Equation 3 assumes $V_{W}$ is buffered so that the effect of wiper resistance is nulled. Operation of the digital potentiometer in the divider mode results in more accurate operation over temperature. Here the output voltage is dependent on the ratio of the internal resistors and not the absolute value, therefore, the drift improves to $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. There is no voltage polarity restriction between terminals $\mathrm{A}, \mathrm{B}$, and W as long as the terminal voltage ( $\mathrm{V}_{\text {TERM }}$ ) stays within $\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\text {TERM }}<\mathrm{V}_{\mathrm{DD}}$.

## PROGRAMMING EXAMPLES

The following programming examples illustrate the typical sequence of events for various features of the AD5233. Users should refer to Table III for the instructions and data word format. The Instruction numbers, addresses, and data appearing at SDI and SDO pins are displayed in hexadecimal format in the following examples.

Table VIII. Scratch Pad Programming

| SDI | SDO | Action |
| :--- | :--- | :--- |
| $\mathrm{B}^{1} 10_{\mathrm{H}}$ | XXXX $_{\mathrm{H}}$ <br> Wiper W 1 | Loads data $10_{\mathrm{H}}$ into RDAC1 register, <br> moves to $1 / 4$ full-scale position |

Table IX. Incrementing RDAC1 Followed by Storing the Wiper Setting to EEMEM1

| SDI | SDO | Action |
| :--- | :--- | :--- |
| $\mathrm{B010}_{\mathrm{H}}$ | $\mathrm{XXXX}_{\mathrm{H}}$ | Loads data 10 <br> Wiper into RDAC1 moves to 1/4 full-scale position |
| ${\mathrm{E} 0 \mathrm{XX}_{\mathrm{H}}}^{\text {W010 }}$ | ${\mathrm{B} 010_{\mathrm{H}}}^{\mathrm{E}_{\mathrm{H}}}$Increments RDAC1 register by one to $11_{\mathrm{H}}$ |  |
| $20 \mathrm{XX}_{\mathrm{H}}$ | $\mathrm{XXXX}_{\mathrm{H}}$ | Increments RDAC1 register by one to 12 <br> Continue until desired wiper position reached <br> Saves RDAC1 register data into EEMEM1 <br> Optionally tie WP to GND to protect <br> EEMEM values |

Table X. Restoring EEMEM1 Value to RDAC1 Register
EEMEM value for RDAC can be restored by Power On, Strobing
$\overline{\mathrm{PR}}$ pin, or two different commands as shown below

| SDI | SDO | Action |
| :--- | :--- | :--- |
| $10 \mathrm{XX}_{\mathrm{H}}$ | $\mathrm{XXXX}_{\mathrm{H}}$ | Restores EEMEM1 value to RDAC1 register <br> NOP. Recommended command to minimize <br> power consumption |
| $80 \mathrm{XX}_{\mathrm{H}}$ | $10 \mathrm{XX}_{\mathrm{H}}$ | pXX |
| $\mathrm{XXX}_{\mathrm{H}}$ | $00 \mathrm{XX}_{\mathrm{H}}$ | Reset EEMEM1 value to RDAC1 register |

Table XI Using Left Shift by One to Increment 6 dB Step

| SDI | SDO | Action |
| :--- | :--- | :--- |
| $\mathrm{C} 0 \mathrm{XX}_{\mathrm{H}}$ | $\mathrm{XXXX}_{\mathrm{H}}$ | Moves wiper to double the present data <br> contained in RDAC1 register |

Table XII. Storing Additional User Data in EEMEM

| SDI | SDO | Action |
| :--- | :--- | :--- |
| $35 \mathrm{AA}_{\mathrm{H}}$ | $\mathrm{XXXX}_{\mathrm{H}}$ | Stores data AA <br> location USER1 (Allo spare EEMEM6 to address in <br> locath <br> 11 locations with maximum 8 bits of Data) |
| $3655_{\mathrm{H}}$ | $35 \mathrm{AA}_{\mathrm{H}}$ | Stores data 55 into spare EEMEM7 <br> location USER2. (Allowable to address <br> 11 locations with maximum 8 bits of data) |

Table XIII. Reading Back Data from Various Memory Locations

| SDI | SDO | Action |
| :--- | :--- | :--- |
| $95 \mathrm{XX}_{\mathrm{H}}$ | $\mathrm{XXXX}_{\mathrm{H}}$ | Prepares data read from USER1 location <br> $00 \mathrm{XX}_{\mathrm{H}}$ |
| $95 \mathrm{AA}_{\mathrm{H}}$ | NOP instruction \#0 sends 16-bit word out <br> of SDO where the last 8 bits contain the <br> contents of USER1 location. NOP <br> command ensures device returns to idle <br> power dissipation state |  |

Table XIV. Reading Back Wiper Settings

| SDI | SDO | Action |
| :--- | :--- | :--- |
| $\mathrm{B020}_{\mathrm{H}}$ | $\mathrm{XXXX}_{\mathrm{H}}$ | Sets RDAC1 to mid-scale |
| ${\mathrm{C} 0 \mathrm{XX}_{\mathrm{H}}}^{\mathrm{B} 020_{\mathrm{H}}}$ | Doubles RDAC1 from mid-scale to full-scale <br> (Left Shift Instruction) |  |
| ${\mathrm{A} 0 \mathrm{XX}_{\mathrm{H}}}^{\mathrm{C} 0 \mathrm{XX}_{\mathrm{H}}}$ | Prepares reading wiper setting from RDAC1 <br> register <br> Readback full-scale value from RDAC1 <br> register |  |

## FLASH/EEMEM RELIABILITY

The Flash/EE Memory array on the AD5233 is fully qualified for two key Flash/EE memory characteristics, namely Flash/EE Memory Cycling Endurance and Flash/EE Memory Data Retention.
Endurance quantifies the ability of the Flash/EE memory to be cycled through many Program, Read, and Erase cycles. In real terms, a single endurance cycle is composed of four independent, sequential events. These events are defined as:

1. Initial page erase sequence
2. Read/verify sequence
3. Byte program sequence
4. Second read/verify sequence

During reliability qualification Flash/EE memory is cycled from $00_{\mathrm{H}}$ to $3 \mathrm{~F}_{\mathrm{H}}$ until a first fail is recorded signifying the endurance limit of the on-chip Flash/EE memory.

As indicated in the specification pages of this data sheet, the AD5233 Flash/EE Memory Endurance qualification has been carried out in accordance with JEDEC Specification A117 over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The results allow the specification of a minimum endurance figure over supply and temperature of 100,000 cycles, with an endurance figure of 700,000 cycles being typical of operation at $25^{\circ} \mathrm{C}$.

Retention quantifies the ability of the Flash/EE memory to retain its programmed data over time. Again, the AD5233 has been qualified in accordance with the formal JEDEC Retention Lifetime Specification (A117) at a specific junction temperature ( $\mathrm{T}_{\mathrm{J}}=55^{\circ} \mathrm{C}$ ). As part of this qualification procedure, the Flash/EE memory is cycled to its specified endurance limit described above, before data retention is characterized. This means that the Flash/EE memory is guaranteed to retain its data for its full-specified retention lifetime every time the Flash/EE memory is reprogrammed. It should also be noted that retention lifetime, based on an activation energy of 0.6 V, will derate with $\mathrm{T}_{\mathrm{J}}$ as shown in Figure 11. For example, the data is retained for 100 years at $55^{\circ} \mathrm{C}$ operation, but reduces to 15 years at $85^{\circ} \mathrm{C}$ operation. Beyond such limit, the part must be reprogrammed so that the data can be restored.


Figure 11. Flash/EE Memory Data Retention

## APPLICATIONS

## Bipolar Operation From Dual Supplies

The AD5233 can be operated from dual supplies $\pm 2.5 \mathrm{~V}$, which enables control of ground referenced AC signals or bipolar operation. AC signals, as high as $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$, can be applied directly across terminals $\mathrm{A}-\mathrm{B}$ with the output taken from terminal W, see Figure 12 for a typical circuit connection.


Figure 12. Bipolar Operation from Dual Supplies

## Gain Control Compensation

Digital Potentiometer is commonly used in gain control such as the noninverting gain amplifier shown in Figure 13.


Figure 13. Typical Noninverting Gain Amplifier
Notice that when RDAC B terminal parasistic capacitance is connected to the op amp noninverting node, it introduces a zero for the $1 / \beta_{0}$ term with $20 \mathrm{~dB} / \mathrm{dec}$ whereas a typical opamp GBP has $-20 \mathrm{~dB} /$ dec characteristics. A large R 2 and finite C 1 can cause this Zero's frequency to be falling well below the crossover frequency. Hence the rate of closure becomes $40 \mathrm{~dB} / \mathrm{dec}$ and the system has a $0^{\circ}$ phase margin at the crossover frequency. The output may ring or oscillate if an input is a rectangular pulse or step function.

Similarly, it is also likely to ring when the switching between two gain values, this is equivalent to a step change at the input.
Depending on the op amp GBP, reducing the feedback resistor may extend the Zero's frequency far enough to overcome the problem, a better approach is to include a compensation capacitor C 2 to cancel the effect caused by C1. Optimum compensation occurs when $\mathrm{R} 1 \times \mathrm{C} 1=\mathrm{R} 2 \times \mathrm{C} 2$. This is not an option because of the variation of R2. As a result, one may use the relationship above and scale C2 as if R2 is at its maximum value. Doing so may overcompensate and compromise the performance when R2 is set at low values. On the other hand, it will avoid the ringing or oscillation at the worst case. For critical applications, C2 should be found empirically to suit the need. In general, C 2 in the range of few pF to no more than few tenths of pF is usually adequate for the compensation.
Similarly, there are W and A terminal capacitances connected to the output (not shown), their effect at this node is less significant and the compensation can be avoided in most cases.

## High Voltage Operation

The Digital Potentiometer can be placed directly in the feedback or input path of an op amp for gain control, provided that the voltage across terminals A-B, W-A, or W-B does not exceed $|5 \mathrm{~V}|$. When high voltage gain is needed, users should set a fixed gain in an op amp operated at high voltage, and let the digital potentiometer control the adjustable input, Figure 14 shows a simple implementation. Similarly, a compensation capacitor C may be needed to dampen the potential ringing when the digital potentiometer changes steps. This effect is prominent when stray capacitance at the inverting node is augmented by large feedback resistor. In general, a few picofarad capacitor $C$ is adequate to combat the problem.


Figure 14. 15 V Voltage Span Control

## Programmable Voltage Reference

For voltage divider mode operation, Figure 15, it is common to buffer the output of the digital potentiometer unless the load is much larger than $\mathrm{R}_{\mathrm{WB}}$. Not only does the buffer serve the purpose of impedance conversion, but also allows heavier loads to be driven.


Figure 15. Programmable Voltage Reference

## Bipolar Programmable Gain Amplifier

There are several ways to achieve bipolar gain, Figure 16 shows one versatile implementation. Digital potentiometer U1 sets the adjustment range; therefore the wiper voltage $\mathrm{V}_{\mathrm{W} 2}$ can be programmed between $\mathrm{V}_{\mathrm{i}}$ and $-\mathrm{KV} \mathrm{V}_{\mathrm{i}}$ at a given U 2 setting. Configuring $\mathrm{A}_{2}$ as an noninverting amplifier yields a linear transfer function:

$$
\begin{equation*}
\frac{V_{O}}{V_{i}}=\left(1+\frac{R 2}{R 1}\right) \times\left(\frac{D_{2}}{64} \times(1+K)-K\right) \tag{4}
\end{equation*}
$$

where $K$ is the ratio of $\mathrm{R}_{\mathrm{WB}} / \mathrm{R}_{\mathrm{WA}}$ which is set by $U 1$ and $D=$ Decimal Equivalent of the Input Code.


Figure 16. Bipolar Programmable Gain Amplifier
In the simpler (and much more usual) case, where $\mathrm{K}=1$, a pair of matched resistors can replace U1. Equation 4 simplifies to:

$$
\begin{equation*}
\frac{V_{O}}{V_{i}}=\left(1+\frac{R 2}{R 1}\right) \times\left(\frac{2 D_{2}}{64}-1\right) \tag{5}
\end{equation*}
$$

Table XV shows the result of adjusting $D$, with A2 configured as a unity gain, a gain of 2 , and a gain of 10 . The result is a bipolar amplifier with linearly programmable gain and 64 step resolution.

Table XV. Result of Bipolar Gain Amplifier

| $\mathbf{D}$ | $\mathbf{R} 1=\infty, \mathbf{R} 2=\mathbf{0}$ | $\mathbf{R} 1=\mathbf{R 2}$ | $\mathbf{R 2}=\mathbf{9 R 1}$ |
| :--- | :--- | :--- | :--- |
| 0 | -1 | -2 | -10 |
| 16 | -0.5 | -1 | -5 |
| 32 | 0 | 0 | 0 |
| 48 | 0.5 | 1 | 5 |
| 63 | 0.968 | 1.937 | 9.680 |

## Programmable Low-Pass Filter

Digital potentiometer AD5233 can be used to construct a second order Sallen Key Low-Pass Filter, Figure 17. The design equations are:

$$
\begin{align*}
& \frac{V_{O}}{V_{i}}=\frac{\omega_{O}^{2}}{S^{2}+\frac{\omega_{O}}{Q} S+\omega_{O}^{2}}  \tag{6}\\
& \omega_{O}=\sqrt{\frac{1}{R 1 R 2 C 1 C 2}}  \tag{7}\\
& Q=\frac{1}{R 1 C 1}+\frac{1}{R 2 C 2} \tag{8}
\end{align*}
$$

where $\mathrm{Q}=\mathrm{Q}$ factor, $\omega_{\mathrm{O}}=$ resonant frequency, R 1 and $\mathrm{R} 2=\mathrm{R}_{\mathrm{WB} 1}$ and $\mathrm{R}_{\mathrm{WB} 2}$ respectively. To achieve maximally flat bandwidth where $\mathrm{Q}=0.707$, let C 1 be twice the size of C 2 and let $\mathrm{R} 1=\mathrm{R} 2$. Users can first select some convenient values for the capacitors, then gang and move R1 and R2 together to adjust -3 dB corner frequency. Instructions \#5, \#7, \#13, and \#15 of the AD5233 make these change simple to implement.


Figure 17. Sallen Key Low-Pass Filter

## Programmable State-Variable Filter

One of the standard circuits used to generate a low-pass, highpass, or bandpass filter is the state variable active filter. The digital potentiometer AD5233 allows full programmability of the frequency, gain, and the Q of the filter outputs. Figure 18 shows the filter circuit using a 2.5 V virtual ground, which allows a $\pm 2.5 \mathrm{Vp}$ input and output swing. RDAC 2 and 3 set the LP, HP, and BP cutoff and center frequencies respectively. RDAC2 and RDAC3 should be programmed with the same data (as with ganged potentiometers) to maintain the best circuit Q .

The transfer function of the Bandpass Filter is:

$$
\begin{equation*}
\frac{V_{B P}}{V_{i}}=\frac{A_{O} \frac{\omega_{O}}{Q} S}{S^{2}+\frac{\omega_{O}}{Q} S+\omega_{O}^{2}} \tag{9}
\end{equation*}
$$

where $A_{O}$ is the gain.
For $\mathrm{R}_{\mathrm{WB} 2(\mathrm{D} 2)}=\mathrm{R}_{\mathrm{WB} 3(\mathrm{D} 3))}, \mathrm{R} 1=\mathrm{R} 2$, and $\mathrm{C} 1=\mathrm{C} 2$ :

$$
\begin{align*}
& \omega_{O}=\frac{1}{R_{W B 2} C 1}  \tag{10}\\
& A_{O}=-\frac{R_{W B 1}}{R_{W A 1}}  \tag{11}\\
& Q=\frac{R_{W A 4}}{R_{W B 4}} \times \frac{R_{W B 1}}{R 1} \tag{12}
\end{align*}
$$

Figure 19 shows the measured filter response at the bandpass output as a function of the RDAC2 and RDAC3 settings which produce a range of center frequencies from 2 kHz to 20 kHz . The filter gain response at the bandpass output is shown in Figure 20. At a center frequency of 2 kHz , the gain is adjusted over -20 dB to +20 dB range determined by RDAC1. Circuit Q is adjusted by RDAC4 and RDAC1. The suitable op amps for this application are OP4177, AD8604, OP279, and AD824.


Figure 18. Programmable Stable Variable Filter


Figure 19. Programmed Center Frequency Bandpass Response


Figure 20. Programmed Amplitude Bandpass Response

## Programmable Oscillator

In a classic Wien-bridge oscillator, Figure 21, the Wien network ( $\mathrm{R}, \mathrm{R}^{\prime}, \mathrm{C}, \mathrm{C}^{\prime}$ ) provides positive feedback, while R 1 and R 2 provide negative feedback. At the resonant frequency, $\mathrm{f}_{\mathrm{O}}$, the overall phase shift is zero, and the positive feedback causes the circuit to oscillate. If the op amp is chosen with relatively high gain bandwidth product, the frequency response of the op amp can be neglected. With $\mathrm{R}=\mathrm{R}^{\prime}, \mathrm{C}=\mathrm{C}^{\prime}$, and $\mathrm{R} 2=\mathrm{R} 2 \mathrm{~A} / /\left(\mathrm{R} 2 \mathrm{~B}+\mathrm{R}_{\text {DIODE }}\right)$, the oscillation frequency is:

$$
\begin{equation*}
\omega_{O}=\frac{1}{R C} \text { or } f_{O}=\frac{1}{2 \pi R C} \tag{13}
\end{equation*}
$$

where $R$ is equal $\mathrm{R}_{\mathrm{WA}}$ such that:

$$
\begin{equation*}
R=\frac{64-D}{64} R_{A B} \tag{14}
\end{equation*}
$$

At resonance, setting

$$
\begin{equation*}
\frac{R 2}{R 1}=2 \tag{15}
\end{equation*}
$$

balances the bridge. In practice, R2/R1 should be set slightly larger than 2 to ensure the oscillation can start. On the other hand, the alternate turn-on of the diodes $D_{1}$ and $D_{2}$ ensures R2/R1 to be smaller than 2 momentarily and therefore stabilizes the oscillation.
Once the frequency is set, the oscillation amplitude can be tuned by R2B since:

$$
\begin{equation*}
\frac{2}{3} V_{O}=I_{D} R 2 B+V_{D} \tag{16}
\end{equation*}
$$

$V_{O}, I_{D}$, and $V_{D}$ are interdependent variables. With proper selection of R2B, an equilibrium will be reached such that $V_{O}$ converges. R2B can be in series with a discrete resistor to increase the amplitude but the total resistance cannot be too large to saturate the output. In this configuration, R2B can be adjusted from minimum to full scale with amplitude varied from $\pm 0.6 \mathrm{~V}$ to $\pm 0.9 \mathrm{~V}$. Using 2.2 nF for C and $\mathrm{C}^{\prime}, 10 \mathrm{k} \Omega$ dual digital potentiometer, with R and $\mathrm{R}^{\prime}$ set to $8 \mathrm{k} \Omega, 4 \mathrm{k} \Omega$, and $700 \Omega$, oscillation occurs at $8.8 \mathrm{kHz}, 17.6 \mathrm{kHz}$, and 100 kHz respectively, see Figure 22.

In both circuits in Figure 17 and 21, the frequency tuning requires that both RDACs to be adjusted to the same settings. Since the two channels may be adjusted one at a time, an intermediate state will occur that may not be acceptable for certain applications. Of course, the increment/decrement all instructions \#5, \#7, \#13, \#15 can be used. Different devices can also be used in daisy-chained mode so that parts can be programmed to the same setting simultaneously.


Figure 21. Programmable Oscillator with Amplitude Control


Figure 22. Programmable Oscillation

## Programmable Voltage Source with Boosted Output

For applications require high current adjustment such as laser diode driver or turnable laser, a boosted voltage source can be considered, see Figure 23.


Figure 23. Programmable Booster Voltage Source In this circuit, the inverting input of the opamp forces the $V_{\text {BIAS }}$ to be equal to the wiper voltage set by the digital potentiometer. The load current is then delivered by the supply via the P-Ch FET P1. The N-Ch FET N1 simplifies the opamp driving requirement. A1 needs to be rail-to-rail input type. Resistor R1 is needed to prevent P1 for not turning off once it is on. The choice of R1 is a balance between the power loss of this resistor and the output turn off time. N1 can be any general purpose signal FET; on the otherhand, P 1 is driven in the saturation state and therefore its power handling must be adequate to dissipate $\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\text {BIAS }}\right) \times \mathrm{I}_{\text {BIAS }}$ power. This circuit can source maximum of 100 mA at 5 V supply. Higher current can be achieved with P1 in larger package. Note that a single N-Ch FET can replace P1, N1, and R1 altogether. However, the output swing will be limited unless separate power supplies are used. For precision applications, a voltage reference such as ADR423, ADR292, and AD1584, can be applied at the input of the digital potentiometer.

## Programmable 4 mA -to- 20 mA Current Source

A programmable 4 mA -to- 20 mA current source can be implemented with the circuit shown in Figure 24. REF191 is a unique low supply headroom precision reference that can deliver the 20 mA needed at 2.048 V . The load current is simply the voltage across terminals B-to-W of the digital pot divided by $\mathrm{R}_{\mathrm{S}}$.


Figure 24. Programmable 4-to-20 mA Current Source
The circuit is simple, but beware two things. First, dual supply op amps are ideal because the ground potential of REF191 can swing from -2.048 V at zero-scale to $\mathrm{V}_{\mathrm{L}}$ at full-scale of the potentiometer setting. Although the circuit works under single supply, the programmable resolution of system will be reduced. Second, the voltage compliance at $\mathrm{V}_{\mathrm{L}}$ is limited to 2.5 V or equivalently a
$125 \Omega$ load. Should higher voltage compliance be needed, users may consider digital potentiometers AD5260, AD5280, and AD7376. Figure 25 shows an alternate circuit for high voltage compliance.

## Programmable Bidirectional Current Source

For applications that require bidirectional current control or higher voltage compliance, a Howland current pump can be a solution, Figure 25. If the resistors are matched, the load current is

$$
\begin{equation*}
I_{L}=\frac{\left(\frac{R 2 A+R 2 B}{R 1}\right)}{R 2 B} \times V_{W} \tag{17}
\end{equation*}
$$



Figure 25. Programmable Bidirectional Current Source
$\mathrm{R}_{2 \mathrm{~B}}$ in theory can be made as small as needed to achieve the current needed within A2 output current driving capability. In this circuit OP2177 delivers $\pm 5 \mathrm{~mA}$ in both directions and the voltage compliance approaches 15 V . If there are no C 1 and C 2 , if can be shown that the output impedance becomes

$$
\begin{equation*}
Z_{O}=\frac{R 1^{\prime} R 2 B(R 1+R 2 A)}{R 1 R 2^{\prime}-R 1^{\prime}(R 2 A+R 2 B)} \tag{18}
\end{equation*}
$$

$\mathrm{Z}_{\mathrm{O}}$ can be infinite if resistors $\mathrm{R} 1^{\prime}$ and $\mathrm{R} 2^{\prime}$ match precisely with R 1 and $\mathrm{R} 2 \mathrm{~A}+\mathrm{R} 2 \mathrm{~B}$ respectively. On the other hand, $\mathrm{Z}_{\mathrm{O}}$ can be negative if the resistors are not matched. As a result, C 1 and C 2 , in the range of 1 F to 10 pF are needed to prevent the oscillation.

## Resistance Scaling

AD5233 offers $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$ nominal resistance. For users who need lower resistance while maintaining the number of adjustment step, they can parallel multiple devices. For example, Figure 26 shows a simple scheme of paralleling two AD5233 channels. To adjust half of the resistance linearly per step, users need to program both devices coherently with the same settings.


## Figure 26. Reduce Resistance by Half with Linear Adjustment Characteristics

In voltage divider mode, a much lower resistance can be achieved by paralleling a discrete resistor as shown in Figure 27. The equivalent resistance become:

$$
\begin{equation*}
R_{W B e q}=\frac{D}{64}(R 1 \| R 2)+R_{W} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
R_{W A e q}=\left(1-\frac{D}{64}\right)(R 1 \| R 2)+R_{W} \tag{20}
\end{equation*}
$$



Figure 27. Lowering the Nominal Resistance
Figures 26 and 27 show that the digital potentiometer steps change linearly. On the other hand, log taper adjustment is usually preferred in applications like audio control. Figure 28 shows another way of resistance scaling. In this configuration, the smaller the R2 with respect to R1, the more the pseudo $\log$ taper characteristic behaves.


Figure 28. Resistor Scaling with Pseudo Log Adjustment Characteristics

## Doubling The Resolution

Borrowing from ADI's patented RDAC segmentation technique, we can configure three channels of AD5233 as shown in Figure 29 by paralleling a discrete resistor $R_{p}\left(R_{p}=R_{A B} / 64\right)$ with RDAC3, we can double the resolution of AD5233 from 6-bit to 12-bit. We may think of moving RDAC1 and RDAC2 together forms the coarse 6 -bit resolution, then moving RDAC3 forms the finer 6-bit resolution. As a result, the effective resolution becomes 12-bit. Nevertheless, the precision of this circuit remains only 6-bit accurate and the programming can be complicated.


Figure 29. Doubling AD5233 from 6-Bit to 12-Bit

## Resistance Tolerance, Drift, and Temperature Coefficient Mismatch Considerations

In the rheostate mode operation such as gain control, Figure 30, the tolerance mismatch between the digital potentiometer and the discrete resistor can cause repeatability issue among various systems. Because of the inherent matching of the silicon process, it is practical to apply the dual or multiple channel device in this type of applications. As such, R1 should be replaced by one of the channels of the digital potentiometer and programmed to a specific value. R2 can be used for the adjustable gain. Although it adds cost, this approach minimizes the tolerance and temperature coefficient mismatch between R1 and R2. In addition, this approach also tracks the resistance drift over time. As a result, all these non-ideal parameters become less sensitive to the system variations.


Figure 30. Linear Gain Control with Tracking Resistance Tolerance, and Temperature Coefficient
Notice the circuit in Figure 31 can also be used to track the tolerance, temperature coefficient, and drift in this particular application. The characteristic of the transfer function is however a pseudologarithmic, rather than a linear, gain function.


Figure 31. Nonlinear Gain Control with Tracking Resistance Tolerance and Drift

## RDAC CIRCUIT SIMULATION MODEL



Figure 32. RDAC Circuit Simulation Model for RDAC $=10 \mathrm{k} \Omega$
The internal parasitic capacitances and the external load dominate the ac characteristics of the RDACs. Configured as a potentiometer divider the -3 dB bandwidth of the AD5233 ( $10 \mathrm{k} \Omega$ resistor) measures 630 kHz at half scale. TPC 10 provides the large signal BODE plot characteristic. A parasitic simulation model is shown in Figure 32. Listing I provides a macro-model net list for the $10 \mathrm{k} \Omega$ RDAC:

## Listing I. Macro-model Net List for RDAC

```
. PARAM D=64, RDAC=10E3
.SUBCKT DPOT (A,W,B)
```

| CA | A | 0 | 35E-12 |
| :---: | :---: | :---: | :---: |
| RAW | A | W | \{ (1-D/64)*RDAC +15$\}$ |
| CW | W | 0 | 35-12 |
| RBW | W | B | $\{\mathrm{D} / 64 *$ RDAC +15$\}$ |
| CB | B | 0 | $35 \mathrm{E}-12$ |
|  |  |  |  |
|  |  |  | DPOT |

DIGITAL POTENTIOMETER FAMILY SELECTION GUIDE*

| Part <br> Number | Number of VRs per Package | Terminal Voltage Range (V) | Interface <br> Data Control | Nominal Resistance ( $\mathbf{k} \Omega$ ) | Resolution (No. of Wiper Positions) | Power Supply Current ( $\mathrm{I}_{\mathrm{DD}}$ ) ( $\mu \mathrm{A}$ ) | Packages | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AD5201 | 1 | $\pm 3,+5.5$ | 3-Wire | 10, 50 | 33 | 40 | $\mu$ SOIC-10 | Full ac Specs, Dual Supply, Pwr-On-Reset, Low Cost |
| AD5220 | 1 | 5.5 | UP/DOWN | 10, 50, 100 | 128 | 40 | $\begin{aligned} & \text { PDIP, SO-8, } \\ & \mu \text { SOIC-8 } \end{aligned}$ | No Rollover, Pwr-On-Reset |
| AD7376 | 1 | $\pm 15,+28$ | 3-Wire | $\begin{aligned} & 10,50,100, \\ & 1000 \end{aligned}$ | 128 | 100 | $\begin{aligned} & \text { PDIP-14, } \\ & \text { SOL-16, } \\ & \text { TSSOP-14 } \end{aligned}$ | Single 28 V or Dual $\pm 15$ V Supply Operation |
| AD5200 | 1 | $\pm 3,+5.5$ | 3-Wire | 10, 50 | 256 | 40 | $\mu$ SOIC-10 | Full ac Specs, Dual Supply, Pwr-On-Reset |
| AD8400 | 1 | 5.5 | 3-Wire | 1, 10, 50, 100 | 256 | 5 | SO-8 | Full ac Specs |
| AD5260 | 1 | $\pm 5,+15$ | 3-Wire | 20, 50, 200 | 256 | 60 | TSSOP-14 | $5 \mathrm{~V} \text { to } 15 \mathrm{~V} \text { or } \pm 5 \mathrm{~V}$ <br> Operation, $\mathrm{TC}<50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| AD5241 | 1 | $\pm 3,+5.5$ | 2-Wire | $\begin{aligned} & 10,100, \\ & 1000 \end{aligned}$ | 256 | 50 | $\begin{aligned} & \text { SO-14, } \\ & \text { TSSOP-14 } \end{aligned}$ | $\mathrm{I}^{2} \mathrm{C}$ Compatible, TC $<50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| AD5231 | 1 | $\pm 2.75,+5.5$ | 3-Wire | 10, 50, 100 | 1024 | 20 | TSSOP-16 | Nonvolatile Memory, Direct Program, I/D, $\pm 6 \mathrm{~dB}$ Settability |
| AD5222 | 2 | $\pm 3,+5.5$ | UP/DOWN | $\begin{aligned} & 10,50,100 \\ & 1000 \end{aligned}$ | 128 | 80 | $\begin{aligned} & \text { SO-14, } \\ & \text { TSSOP-14 } \end{aligned}$ | No Rollover, Stereo, Pwr-On-Reset, TC $<50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| AD8402 | 2 | 5.5 | 3-Wire | $\begin{aligned} & 1,10,50 \\ & 100 \end{aligned}$ | 256 | 5 | $\begin{aligned} & \text { PDIP, SO-14, } \\ & \text { TSSOP-14 } \end{aligned}$ | Full ac Specs, nA Shutdown Current |
| AD5207 | 2 | $\pm 3,+5.5$ | 3-Wire | 10, 50, 100 | 256 | 40 | TSSOP-14 | Full ac Specs, Dual Supply, Pwr-On-Reset, SDO |
| AD5232 | 2 | $\pm 2.75,+5.5$ | 3-Wire | 10, 50, 100 | 256 | 20 | TSSOP-16 | Nonvolatile Memory, Direct Program, I/D, $\pm 6 \mathrm{~dB}$ Settability |
| AD5235 | 2 | $\pm 2.75,+5.5$ | 3-Wire | 25, 250 | 1024 | 20 | TSSOP-16 | Nonvolatile Memory, <br> Direct Program, $\mathrm{TC}<50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| AD5242 | 2 | $\pm 3,+5.5$ | 2-Wire | $\begin{aligned} & 10,100, \\ & 1000 \end{aligned}$ | 256 | 50 | $\begin{aligned} & \text { SO-16, } \\ & \text { TSSOP-16 } \end{aligned}$ | $\mathrm{I}^{2} \mathrm{C}$ Compatible, TC $<50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| AD5262 | 2 | $\pm 5,+15$ | 3-Wire | 20, 50, 200 | 256 | 60 | TSSOP-16 | $5 \mathrm{~V} \text { to } 15 \mathrm{~V} \text { or } \pm 5 \mathrm{~V}$ <br> Operation, $\mathrm{TC}<50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| AD5203 | 4 | 5.5 | 3-Wire | 10, 100 | 64 | 5 | $\begin{aligned} & \text { PDIP, SOL-24, } \\ & \text { TSSOP-24 } \end{aligned}$ | Full ac Specs, nA Shutdown Current |
| AD5233 | 4 | $\pm 2.75,+5.5$ | 3-Wire | 10, 50, 100 | 64 | 20 | TSSOP-24 | Nonvolatile Memory, Direct Program, I/D, $\pm 6 \mathrm{~dB}$ Settability |
| AD5204 | 4 | $\pm 3,+5.5$ | 3-Wire | 10, 50, 100 | 256 | 60 | PDIP, SOL-24, TSSOP-24 | Full ac Specs, Dual Supply, Pwr-On-Reset |
| AD8403 | 4 | 5.5 | 3-Wire | 1, 10, 50, 100 | 256 | 5 | PDIP, SOL-24, TSSOP-24 | Full ac Specs, nA Shutdown Current |
| AD5206 | 6 | $\pm 3,+5.5$ | 3-Wire | 10, 50, 100 | 256 | 60 | $\begin{aligned} & \text { PDIP, SOL-24, } \\ & \text { TSSOP-24 } \end{aligned}$ | Full ac Specs, Dual Supply, Pwr-On-Reset |

[^2]
## OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).



[^0]:    *Patent pending
    NOTES
    ${ }^{1}$ The terms nonvolatile memory and EEMEM are used interchangeably.
    ${ }^{2}$ The terms Digital Potentiometer and RDAC are used interchangeably. REV. 0

[^1]:    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^2]:    *For the most current information on Digital Potentiometers, check the website at: www.analog.com/DigitalPotentiometers

