High Speed Window Comparator

FEATURES

-2 V to +7 V Input Voltage Range Low V_{IN} Bias Current (<100 nA) Up to 5 V/ns Input Signal Tracking Low Dispersion of $\pm \mathbf{1 0 0}$ ps 28-Lead PLCC Package

APPLICATIONS
Automatic Test Equipment Semiconductor Test Systems Board Test Systems

PRODUCT DESCRIPTION

The AD 53042 is an ultrahigh speed window comparator with latch. It uses a high speed monolithic process to provide high dc accuracy without sacrificing input voltage range. On-chip connection of the common input eliminates the contributions of a second bonding pad and package pin to the input capacitance, resulting in a maximum input capacitance of 2 pF .

The AD 53042 employs a high precision differential input stage with a common mode range of 9 V . Its complementary digital outputs are fully ECL compatible. T he output stage is capable of driving a 50Ω line terminated to -2 V . T he device also provides a latch function, allowing operation in track-hold mode and can also be used to generate hysteresis.

FUNCTIONAL BLOCK DIAGRAM

NOTE:
NOT THE ACTUAL PHYSICAL LAYOUT OF DEVICE. NC $=$ NO CONNECTION INSIDE PACKAGE.

Figure 1. Typical Application Circuit

REV. 0

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1997

Parameter	Min	Typ	Max	Units	Test Conditions
POWER SUPPLIES I -Positive Supply C urrents I -N egative Supply Current P -Power Dissipation	-85		65 1.19	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~W} \end{aligned}$	No Load No Load No Load, $+\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-5.2 \mathrm{~V}$
DC INPUT CHARACTERISTICS O ffset Voltage (V_{OS}) $V_{\text {IN }}$ Bias Current $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}$ Bias Current C apacitance $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}$ Voltage R ange ($\mathrm{V}_{\text {См }}$) D ifferential Voltage ($\mathrm{V}_{\text {DIFF }}$) N onlinearity $\mathrm{V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{B}}$ Interaction	$\begin{aligned} & -10 \\ & -0.5 \\ & -20 \\ & -V_{S}+2.7 \\ & -5 \end{aligned}$	$<0.1>$	$\begin{aligned} & 10 \\ & 0.5 \\ & 20 \\ & 2 \\ & +V_{S}-2.5 \\ & 9 \\ & 5 \\ & 0.1 \end{aligned}$	mV $\mu \mathrm{A}$ $\mu \mathrm{A}$ pF V V mV mV / V	$\begin{aligned} & C M V=0 V \\ & V_{\text {IN }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \end{aligned}$ See N ote 1
BIAS CURRENT C hange vs. Comparator State N onlinearity Tempco	$\begin{aligned} & -1 \\ & -2 \end{aligned}$	± 0.1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$	
LATCH ENABLE INPUTS Common-M ode Range D ifferential Voltage Logic "1" Current ($L_{I H}$) Logic "0" Current ($L_{\text {IL }}$)	$\begin{aligned} & -2 \\ & 0.4 \\ & -10 \end{aligned}$		$\begin{aligned} & 1 \\ & 3 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$	
DIGITAL OUTPUTS Logic "1" Voltage (V_{OH}) Logic "0" Voltage (V $\mathrm{OL}_{\mathrm{LL}}$)	-0.98		-1.5	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & \mathrm{Q} \text { or } \overline{\mathrm{Q}}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{Q} \text { or } \overline{\mathrm{Q}}, 50 \Omega \text { to }-2 \mathrm{~V} \end{aligned}$
SWITCHING PERFORMANCE Propagation Delay Input to Output Part-to-Part Skew Change vs. T emperature		± 1	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	ns ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V} p-\mathrm{p}, \mathrm{t}_{\text {PDR }}, \mathrm{t}_{\text {PDF }}$, Figure 1, N ote 2
DISPERSION 5 V p-p Input (All Edges) 5 V p-p Input (All Edges) V Slew $=1 \mathrm{~V} / \mathrm{ns}$ (All Edges) V Slew = $1 \mathrm{~V} / \mathrm{ns}$ (All Edges) M inimum Pulsewidth Edge Interaction Duty Ratio C omparator Interaction		$\begin{aligned} & \pm 100 \\ & \pm 175 \\ & \pm 50 \\ & \pm 50 \\ & <1 \\ & <200 \\ & <100 \\ & <100 \end{aligned}$		$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \mathrm{ps} \\ & \mathrm{ps} \\ & \mathrm{~ns} \\ & \mathrm{ps} \\ & \mathrm{ps} \\ & \mathrm{ps} \end{aligned}$	$\begin{aligned} & 10 \%, 90 \% 0.5 \mathrm{~V} / \mathrm{ns}, 3 \mathrm{~V} / \mathrm{ns} \\ & 10 \%, 90 \% 5 \mathrm{~V} / \mathrm{ns} \\ & 10 \%, 90 \% 3 \mathrm{~V}, 5 \mathrm{~V} \\ & 20 \%, 80 \% 1 \mathrm{~V} \\ & \text { See N ote 3 } \\ & \text { See N ote 4 } \\ & \text { See N ote } 5 \end{aligned}$

NOTES

${ }^{1}$ D efined as change in $\mathrm{V}_{\text {Os }}$ from $-\mathrm{V}_{\mathrm{S}}+2.95 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{S}}-2.75 \mathrm{~V}$ (throughout the range) after V_{A} and V_{B} are corrected for gain and offset using 0 V and 5 V .
${ }^{2}$ Propagation delay is measured from the input threshold crossing at the 50% point of a 0 V to 5 V input to the output Q and $\overline{\mathrm{Q}}$ crossing.
${ }^{3}$ T he minimum input pulsewidth that will maintain a 600 mV ECL swing on the output. The input is a 0 V to 3 V signal with a $3 \mathrm{~V} / \mathrm{ns}$ rise and fall times. The input pulsewidth is measured between the 2.8 V point of a positive input pulse and the 0.2 V of a negative input pulse. See Figure 2.
${ }^{4} \mathrm{M}$ aximum Change in propagation delay as the input pulse is reduced from 50 ns to a 2 ns pulsewidth. 0 V to 3 V swing with $3 \mathrm{~V} / \mathrm{ns}$ rise/fall time and 25% duty cycle.
${ }^{5} \mathrm{M}$ aximum C hange in propagation delay as the input pulse is reduced from 99% to a 1% duty cycle. 0 V to 3 V swing with $3 \mathrm{~V} / \mathrm{ns}$ rise/fall time and 50 ns to $4.95 \mu \mathrm{~s}$ pulsewidth, period $=5 \mu \mathrm{~s}$.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

Power Supply Voltage

+ $V_{\text {S }}$ to GND	+12 V
$-V_{S}$ to GND	-8 V
$+\mathrm{V}_{S}$ to $-\mathrm{V}_{S}$	+17 V
nputs	
$\mathrm{V}_{\text {IN }}, \mathrm{V}, \mathrm{V}$	$+\mathrm{V}_{\mathrm{S}}-13.5 \mathrm{~V},-\mathrm{V}_{5}+13.7 \mathrm{~V}$
LEA, LEA, LEB, LEB ${ }^{\text {V }}$ S $-14 \mathrm{~V},-\mathrm{V}_{S}+10 \mathrm{~V}$	
Currents	
$1\left(+V_{\text {s }}\right)$	95 mA
$\mathrm{I}\left(-\mathrm{V}_{\mathrm{S}}\right)$. 75 mA
$\mathrm{QA}, \overline{\mathrm{QA}}, \mathrm{QB}, \overline{\mathrm{QB}}$. -40 mA to +2 mA

Environmental
Operating Temperature (Ambient) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 20 sec) $+300^{\circ} \mathrm{C}$
*Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Absolute maximum limits apply individually, not in combination. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
The device must suffer no reliability degradation if any supply pin is either shorted to ground or left floating for an indefinite periods of time during normal operation.

Figure 2. Timing Diagram

ORDERING GUIDE

		Shipment Method, Quantity Per Shipping Container	Package Option
Model	Package Description	Tube, 36 Pieces	P-28A

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 53042 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OUTLINE DIMENSIONS

Dimensions shown in inches and（mm）．

28－Lead Plastic Leaded Chip Carrier （P－28A）

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

