Preliminary Technical Data

FEATURES

- Monotonic DNL < ± 1 LSB
- Improved Accuracy at Zero Scale
- Fast 2μ s Settling Time
- Power ON Reset
- 3-Wire Serial Data Input
- 25 MHz Data Load Rate
- Internal Reference Voltage
- $\quad+4.5 \mathrm{~V}$ to +5.5 V Single Supply Operation

APPLICATIONS

- Digital Control of Gain \& Offset

GENERAL DESCRIPTION

The AD5329 is a serial-input, dual 12-bit digital-to-analog converter that accepts two's complement digital coding. An internal voltage reference generates a stable 2V DACREF. The buffered DACREF output generates the system bipolar ground reference at pin V_{Bz}. The bipolar DAC output swing programs over a $4 \mathrm{~V}_{\mathrm{PP}}$ range. The device is specified for operation from +5 volts $\pm 10 \%$.

Data is loaded MSB first on the positive clock edge (SCLK) when the frame synch (FSYNC) input is active low. The serial clock input word is 16 -bits with the MSB position containing an address bit. The last 12
data bits clocked into the register will be transferred to the internal DAC register when the strobe input is returned to logic high.
The output transfer equation is:
$\mathrm{V}_{\text {OUT }}=\left[(\mathrm{D}-2048) / 4096 * \mathrm{~V}_{\text {DACREF }}\right]+\mathrm{V}_{\text {BZ }}$
Where D is the 12-bit decimal data, and $\mathrm{V}_{\text {out }}, \mathrm{V}_{\text {Dacref }}, \mathrm{V}_{\text {BZ }}$ are with respect to ground.
The AD5329 is available in the compact 1.1 mm thin μ SOIC- 10 package. All parts are guaranteed to operate over the industrial temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

PIN CONFIGURATION

ORDERING GUIDE

Model	RES (bits)	Temp Range	Package Description	Package Option
AD5329KRM-REEL7	12	$0 /+70^{\circ} \mathrm{C}$	μ SOIC-10	RM-10

FUNCTIONAL BLOCK DIAGRAM

REV PrC, 20 DEC 99
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.
Tel: 781/329-4700
World Wide Web Site: http://www.analog.com
Fax:617/326-8703
©Analog Devices, Inc., 1998

AD5329 -- SPECIFICATIONS

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{D D}=+5 \mathrm{~V} \pm 10 \%, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Units
DC CHARACTERISTICS						
Resolution Differential Nonlinearity Error Integral Nonlinearity Error Integral Nonlinearity Error Full-Scale Temperature Coefficient ${ }^{2}$ Positive-Full-Scale Error Bipolar-Zero-Scale Error Negative-Full-Scale Error	N DNL INL INL $\Delta \mathrm{V}_{\mathrm{FS}} / \Delta \mathrm{T}$ $V_{\text {+FSE }}$ $V_{\text {BZSE }}$ $V_{\text {-FSE }}$	Within 256 codes of $V_{B Z}$ $\begin{aligned} & \text { Code }=7 \mathrm{FFH} \\ & \text { Code }=7 \mathrm{FFH} \\ & \text { Code }=000 \mathrm{H} \\ & \text { Code }=800 \mathrm{H} \end{aligned}$	$\begin{gathered} 12 \\ 1 \\ 0.05 \\ 0.02 \\ \\ 0.1 \\ 0.1 \\ 0.1 \end{gathered}$	$\begin{gathered} \pm 0.5 \\ \pm 0.02 \\ \pm 0.01 \\ 100 \\ -0.05 \\ +0.1 \\ -0.05 \end{gathered}$	$\begin{gathered} +1 \\ +0.05 \\ +0.02 \\ \\ +0.1 \\ +0.1 \\ +0.1 \end{gathered}$	$\begin{array}{r} \text { Bits } \\ \text { LSB } \\ \% \mathrm{FS} \\ \% \mathrm{FS} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \% \mathrm{FS} \\ \mathrm{~V} \\ \% \mathrm{FS} \end{array}$
ANALOG OUTPUTS Nominal Positive Full-Scale Positive Full-Scale Tempco ${ }^{2}$ Nominal VBZ Output Voltage Bipolar-Zero Output Resistance ${ }^{2}$ Nominal Peak-Peak Output Swing	Voutab TCVoutab VBZ Rbz $\left\|V_{+F S}\right\|+\left\|V_{-F S}\right\|$	$\begin{aligned} & \text { Code }=7 \text { FFH }_{H} \\ & \text { Code }=7 F_{H} \end{aligned}$ Code 7FFH to Code 800H		$\begin{gathered} 4 \\ \pm 100 \\ 2 \\ 1 \\ 4 \end{gathered}$		Volts $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Volts Ohm Volts
DIGITAL INPUTS Input Logic High Input Logic Low Input Current Input Capacitance ${ }^{2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{C}_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & V_{D D}=+5 \mathrm{~V} \\ & V_{D D}=+5 \mathrm{~V} \\ & V_{I N}=0 \mathrm{~V} \text { or }+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V} \end{aligned}$	2.4	5	$\begin{aligned} & 0.8 \\ & \pm 1 \end{aligned}$	$\begin{array}{r} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \\ \mathrm{pF} \end{array}$
POWER SUPPLIES Power Supply Range Supply Current Supply Current in Shutdown Power Dissipation ${ }^{3}$ Power Supply Sensitivity	$V_{D D}$ Range ld IDD_SHDN PDISS PSS	$\begin{aligned} & V_{I H}=V_{D D} \text { or } V_{I L}=0 \mathrm{~V} \\ & V_{I H}=V_{D D} \text { or } V_{I L}=0 \mathrm{~V}, \mathrm{~B} 14=0 \\ & V_{I H}=V_{D D} \text { or } V_{I L}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \Delta V_{D D}=+5 \mathrm{~V} \pm 10 \% \end{aligned}$	4.5	$\begin{gathered} 2.5 \\ 40 \\ 12.5 \\ 0.0002 \end{gathered}$	5.5 0.01	$\begin{array}{r} \mathrm{V} \\ \mathrm{~mA} \\ \mu \mathrm{~A} \\ \mathrm{~mW} \\ \% / \% \end{array}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ Settling Time	t_{s}	For a 16 LSB step change		2	3	$\mu \mathrm{s}$
INTERFACE TIMING CHARACTERISTICS SCLK Clock Cycle time Input Clock Pulse Width Data Setup Time Data Hold Time FSYNC to SCLK active edge Setup Time SCLK to FSYNC Hold Time Minimum FSYNC High Time	$\mathrm{t}_{1}{ }^{2,4}$ $\mathrm{t}_{2}, \mathrm{t}_{3}$ t_{4} t_{5} t_{6} t_{7} t_{8}	Clock level low or high	$\begin{gathered} 35 \\ 20 \\ 5 \\ 5 \\ 10 \\ 0 \\ 35 \end{gathered}$			ns ns ns ns ns ns ns

NOTES:

. Typicals represent average readings at $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{D D}=+5 \mathrm{~V}$.
Guaranteed by design and not subject to production test.
3. $\quad P_{D I S S}$ is calculated from ($l_{D D} \times V_{D D}$). CMOS logic level inputs result in minimum power dissipation.
4. See timing diagram for location of measured values. All input control voltages are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2 \mathrm{~ns}(10 \%$ to 90% of $+3 \mathrm{~V})$ and timed from a voltage level of 1.5 V . Switching characteristics are measured using $V_{D D}=+5 \mathrm{~V}$. Input logic should have a $1 \mathrm{~V} / \mu \mathrm{sec}$ minimum slew rate.

Two s Complement, Dual 12-Bit DAC

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)
\qquad
$V_{\text {OUtA }}, V_{\text {outb }}, V_{\text {Bz }}$ to GND \qquad $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$
Digital Input Voltages to GND \qquad $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J} MAX) \qquad $+150^{\circ} \mathrm{C}$

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) \qquad $+300^{\circ} \mathrm{C}$
Package Power Dissipation \qquad $\left(\mathrm{T}_{\mathrm{J} M A X}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$
Thermal Resistance θ_{JA}, μ SOIC-10 \qquad $.206^{\circ} \mathrm{C} / \mathrm{W}$

AD5329 Two's Complement Coding

Binary			Hexadecimal			Scale
0111	1111	1111	7	F	F	+FS
0111	1111	1110	7	F	F	+FS-1LSB
0000	0000	0001	0	0	1	BZS+1LSB
0000	0000	0000	0	0	0	BZS
1111	1111	1111	F	F	F	BZS-1LSB
1000	0000	0001	8	0	1	-FS+1LSB
1000	0000	0000	8	0	0	-FS

TABLE 2: AD5329 PIN Descriptions

Pin	Name	Description
1	V $_{\text {DD }}$	Positive power supply, specified for operation at +5 V.
2	SDA	Serial Data Input, MSB first format
3	NC	No Connect
4	V $_{\text {OUTB }}$	DAC B Voltage Output (A0 = logic " 1 ")
5	V OUTA	DAC A Voltage Output (A0 = logic "0")
6	V $_{\text {BZ }}$	Virtual Bipolar Zero (Active Output)
7	NC	No Connect
8	FSYNC	Frame Sync Input, Active Low. When FSYNC 9
	returns HIGH data in the serial input register	
10	GND	is transferred into the DAC register. Serial Clock Input, positive edge triggered Ground

TABLE 1: AD5329 Serial-Data Word Format

SD: Shutdown is active high B14="1". Both DACs and the DACREF becomes open circuit.

Figure 1A. Timing Diagram

Figure 1B. Detail Timing Diagram

OPERATION

The AD5329 provides a 12-bit, 2's complement, dual, voltage-output digital-to-analog converter. The first data bit of the 16 -bit serial register is decoded to determine which DAC register (DAC A: $\mathrm{A} 0=$ " 0 ", DAC B: A $0=$ " 1 ") will be loaded with the final 12-bits of data.

TABLE 3: Input Logic Control Truth Table

SCLK	FSYNC	Register Activity
L	H	No Shift Register Effect
P	L	Shift One bit in from the SDA pin.
L	P	Transfer SR data into DAC Register
X	L	No Operation
NOTE: P	ne	

NOTE: $\mathrm{P}=$ positive edge, $\mathrm{X}=$ don't care, $\mathrm{SR}=$ Shift Register
The data setup and data hold times in the specification table determine the data valid time requirements. The last 12 bits of the data word entered into the serial register are held when FSYNC returns high.
The internal power ON reset circuit clears the serial input registers to all zeros, and sets the two DAC registers to V_{BZ} (zero code).

All digital inputs are ESD protected with a series input resistor and parallel Zener as shown in figure 7. Applies to digital input pins
SCLK, SDA, FSYNC

Figure 7. Equivalent ESD Protection Circuit

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm)
$10-$ Lead μ SOIC
(RM-10)

