

Two s Complement Dual, 12-Bit DACs

Preliminary Technical Data

AD5329

FEATURES

- Monotonic DNL < ±1 LSB
- Improved Accuracy at Zero Scale
- Fast 2μs Settling Time
- Power ON Reset
- 3-Wire Serial Data Input
- 25MHz Data Load Rate
- Internal Reference Voltage
- +4.5V to +5.5V Single Supply Operation

APPLICATIONS

· Digital Control of Gain & Offset

GENERAL DESCRIPTION

The AD5329 is a serial-input, dual 12-bit digital-to-analog converter that accepts two's complement digital coding. An internal voltage reference generates a stable 2V DACREF. The buffered DACREF output generates the system bipolar ground reference at pin V_{BZ} . The bipolar DAC output swing programs over a $4V_{PP}$ range. The device is specified for operation from +5 volts $\pm 10\%$.

Data is loaded MSB first on the positive clock edge (SCLK) when the frame synch (*FSYNC*) input is active low. The serial clock input word is 16-bits with the MSB position containing an address bit. The last 12

data bits clocked into the register will be transferred to the internal DAC register when the strobe input is returned to logic high.

The output transfer equation is:

 $V_{OUT} = [(D-2048) / 4096 * V_{DACREF}] + V_{BZ}$

Where D is the 12-bit decimal data, and $V_{\text{OUT}},\,V_{\text{DACREF}},\,V_{\text{BZ}}$ are with respect to ground.

The AD5329 is available in the compact 1.1mm thin μ SOIC-10 package. All parts are guaranteed to operate over the industrial temperature range of 0°C to +70°C.

PIN CONFIGURATION

	_	
V _{DD} 1		10 GND
SDA 2		9 SCLK
NC 3		8 FSYNC
V _{OUTB} 4		7 NC
V _{OUTA} 5		6 V _{BZ}

ORDERING GUIDE

	RES	Temp	Package	Package
Model	(bits)	Range	Description	Option
AD5329KRM-REEL7	12	0/+70°C	μSOIC-10	RM-10

FUNCTIONAL BLOCK DIAGRAM

REV PrC, 20 DEC 99

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.

Tel: 781/329-4700 Fax:617/326-8703 World Wide Web Site: http://www.analog.com ©Analog Devices, Inc., 1998

AD5329 -- SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (Vpp = +5V±10%, 0°C < TA < +70°C unless otherwise noted.)

Parameter Parameter		> (V _{DD} = +5V±10%, 0°C < T _A < +70°C unless oth Conditions	nerwise noted.) Min	Typ ¹	Max	Units
DC CHARACTERISTICS						
Resolution Differential Nonlinearity Error Integral Nonlinearity Error Integral Nonlinearity Error Integral Nonlinearity Error Full-Scale Temperature Coefficient ² Positive-Full-Scale Error Bipolar-Zero-Scale Error Negative-Full-Scale Error	N DNL INL INL ΔV _{FS} /ΔT V _{+FSE} V _{BZSE} V _{-FSE}	Within 256 codes of V _{BZ} Code = 7FF _H Code = 7FF _H Code = 000 _H Code = 800 _H	12 1 0.05 0.02 0.1 0.1 0.1	±0.5 ±0.02 ±0.01 100 -0.05 +0.1 -0.05	+1 +0.05 +0.02 +0.1 +0.1 +0.1	Bits LSB %FS %FS ppm/°C %FS V %FS
ANALOG OUTPUTS						
Nominal Positive Full-Scale Positive Full-Scale Tempco ² Nominal V _{BZ} Output Voltage Bipolar-Zero Output Resistance ² Nominal Peak-Peak Output Swing	VOUTA/B TCVOUTA/B VBZ RBZ V+FS + V-FS	Code = 7FF _H Code = 7FF _H Code 7FF _H to Code 800 _H		4 ±100 2 1 4		Volts ppm/°C Volts Ohm Volts
DIGITAL INPUTS						
Input Logic High Input Logic Low Input Current Input Capacitance ²	V _{IH} V _{IL} I _{IL} C _{IL}	$V_{DD} = +5V$ $V_{DD} = +5V$ $V_{IN} = 0V \text{ or } +5V, V_{DD} = +5V$	2.4	5	0.8 ±1	V V µA pF
POWER SUPPLIES	-1.1	110				
Power Supply Range Supply Current Supply Current in Shutdown Power Dissipation ³ Power Supply Sensitivity	V _{DD Range} I _{DD} I _{DD_SHDN} P _{DISS} PSS	$V_{IH} = V_{DD}$ or $V_{IL} = 0V$ $V_{IH} = V_{DD}$ or $V_{IL} = 0V$, B14=0 $V_{IH} = V_{DD}$ or $V_{IL} = 0V$, $V_{DD} = +5.5V$ $\Delta V_{DD} = +5V \pm 10\%$	4.5	2.5 40 12.5 0.0002	5.5 0.01	V mA μA mW %/%
DYNAMIC CHARACTERISTICS ²						
Settling Time	t _S	For a 16 LSB step change		2	3	μs
INTERFACE TIMING CHARACTERISTICS ^{2,4}						
SCLK Clock Cycle time Input Clock Pulse Width Data Setup Time Data Hold Time FSYNC to SCLK active edge Setup Time SCLK to FSYNC Hold Time	t ₁ t ₂ ,t ₃ t ₄ t ₅ t ₆ t ₇	Clock level low or high	35 20 5 5 10			ns ns ns ns ns
Minimum FSYNC High Time	t ₈		35			ns

NOTES:

Typicals represent average readings at +25°C and V_{DD} = +5V.

Guaranteed by design and not subject to production test.

^{3.} PDISS is calculated from (IDD x VDD). CMOS logic level inputs result in minimum power dissipation.

^{4.} See timing diagram for location of measured values. All input control voltages are specified with t_R=t_F=2ns(10% to 90% of +3V) and timed from a voltage level of 1.5V. Switching characteristics are measured using V_{DD} = +5V. Input logic should have a 1V/µsec minimum slew rate.

Two s Complement, Dual 12-Bit DAC

AD5329

ABSOLUTE MAXIMUM RATINGS ($T_A = +25$ °C, unless
otherwise noted)
V_{DD} to GND0.3,+6V
$V_{OUTA},V_{OUTB},V_{BZ}toGND0V,V_{DD}$
Digital Input Voltages to GND $0V$, $V_{DD} + 0.3V$
Operating Temperature Range0°C to +70°C
$Maximum\ Junction\ Temperature\ (T_J \text{MAX})+150^{\circ}C$
Storage Temperature65°C to +150°C
Lead Temperature (Soldering, 10 sec)+300°C
Package Power Dissipation(T_JMAX - $T_A) \; / \; \theta_{JA}$
Thermal Resistance θ_{JA} ,
uSOIC-10 206°C/W

AD5329 Two's Complement Coding

Binar	Y		<u>H</u>	<u>Hexadecimal</u>		al <u>Scale</u>
0111	1111	1111	7	F	F	+FS
0111	1111	1110	7	F	F	+FS-1LSB
0000	0000	0001	0	٥	1	BZS+1LSB
		0000	-	-	_	BZS
		1111	-	F	-	BZS-1LSB
1111	1111	1111	F	F	F	DZ5-115B
1000	0000	0001	8	0	1	-FS+1LSB
1000	0000	0000	8	0	0	-FS

TABLE 2: AD5329 PIN Descriptions

Pin	Name	Description
1	V_{DD}	Positive power supply, specified for operation
		at +5V.
2	SDA	Serial Data Input, MSB first format
3	NC	No Connect
4	V_{OUTB}	DAC B Voltage Output (A0 = logic "1")
5	V_{OUTA}	DAC A Voltage Output (A0 = logic "0")
6	$ m V_{BZ}$	Virtual Bipolar Zero (Active Output)
7	NC	No Connect
8	FSYNC	Frame Sync Input, Active Low. When FSYNC
		returns HIGH data in the serial input register
		is transferred into the DAC register.
9	SCLK	Serial Clock Input, positive edge triggered
10	GND	Ground

TABLE 1: AD5329 Serial-Data Word Format

ADD	R			DAT	A					
B16	B15	B14	B13	B12	B11	<>	B4	B3	B2	B1
A0	X	SD	0	D11	D10	\Diamond	D3	D2	D1	D0
MSB										LSB
100										

SD: Shutdown is active high B14="1". Both DACs and the DACREF becomes open circuit.

Figure 1A. Timing Diagram

Two s Complement, Dual 12-Bit DAC

AD5329

Figure 1B. Detail Timing Diagram

OPERATION

The AD5329 provides a 12-bit, 2's complement, dual, voltage-output digital-to-analog converter. The first data bit of the 16-bit serial register is decoded to determine which DAC register (DAC A: A0= "0", DAC B: A0= "1") will be loaded with the final 12-bits of data.

TABLE 3: Input Logic Control Truth Table

SCLK	FSYNC	Register Activity
L	Н	No Shift Register Effect
P	L	Shift One bit in from the SDA pin.
L	P	Transfer SR data into DAC Register
X	L	No Operation

NOTE: P = positive edge, X = don't care, SR = Shift Register

The data setup and data hold times in the specification table determine the data valid time requirements. The last 12 bits of the data word entered into the serial register are held when FSYNC returns high.

The internal power ON reset circuit clears the serial input registers to all zeros, and sets the two DAC registers to V_{BZ} (zero code).

All digital inputs are ESD protected with a series input resistor and parallel Zener as shown in figure 7. Applies to digital input pins SCLK, SDA, FSYNC

Figure 7. Equivalent ESD Protection Circuit

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm)

10-Lead μSOIC (RM-10)

