FEATURES

2-channel 12-bit DACs
Twos complement facilitates bipolar applications Bipolar zero with 2 V dc offset
Built-in $\mathbf{2 . 0 0 0}$ V precision reference with 10 ppm $/{ }^{\circ} \mathrm{C}$ typ TC
Buffered voltage output, 0 V to 4 V
Single-supply operation, 4.5 V to 5.5 V
Fast $0.8 \mu \mathrm{~s}$ settling time typ
Ultra compact MSOP-10 package
Monotonic DNL < ± 1 LSB
Optimized accuracy at zero scale
Power-on reset to $\mathrm{V}_{\text {REF }}$
3-wire serial data input
Extended temperature range, $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$

APPLICATIONS

Single-supply bipolar converter operations
General-purpose DSP applications
Digital gain and offset controls
Instrumentation level settings
Disk drive control
Precision motor control

GENERAL DESCRIPTION

The AD5399 is the industry-first dual 12-bit digital-to-analog converter that accepts twos complement digital coding with 2 V dc offset for single-supply operation. Augmented with its built-in precision reference and solid buffer amplifier, the AD5399 is the smallest self-contained 12-bit precision DAC that fits many general-purpose as well as DSP specific applications. The twos complement programming facilitates the natural coding implementation commonly found in DSP applications and allows operation in single supply. The AD5399 provides a 2 V reference output, $\mathrm{V}_{\text {REF }}$, for bipolar zero monitoring. It can also be used for other on-board components that require precision reference. The device is specified for operation from $5 \mathrm{~V} \pm 10 \%$ single supply with bipolar output swing from 0 V to 4 V centered at 2 V .

The AD5399 is available in the compact 1.1 mm low profile MSOP-10 package. All parts are guaranteed to operate over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

FUNCTIONAL BLOCK DIAGRAM

 D is the decimal code.
Table 1. Examples of Twos Complement Codes

Twos Complement	D	Scale	Vout (V)
2047	4095	+FS	4.000
2046	4094	+FS - 1 LSB	3.999
1	2049	BZS + 1 LSB	2.001
0	2048	BZS	2.000
4095	2047	BZS - 1 LSB	1.999
2049	1	-FS + 1 LSB	0.001
2048	0	-FS	0.000

FS $=$ Full Scale, BZS $=$ Bipolar Zero Scale

Figure 2. Output vs. Twos Complement Code

[^0]
AD5399

TABLE OF CONTENTS

SPECIFICATIONS ..
ABSOLUTE MAXIMUM RATINGS... 4
PIN CONFIGURATION AND FUNCTIONAL DESCRIPTION.... 5
TIMING CHARACTERISTICS \qquad

REVISION HISTORY
Revision A
Change to Table 1
.. 1
Revision 0: Initial Version

TYPICAL PERFORMANCE CHARACTERISTICS 7
OPERATION ... 10
OUTLINE DIMENSIONS ... 11

SPECIFICATIONS

Table 2. ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%,-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+105^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Unit
DC CHARACTERISTICS Resolution Differential Nonlinearity Error Differential Nonlinearity Error Integral Nonlinearity Error Positive Full-Scale Error Bipolar Zero-Scale Error Negative Full-Scale Error	N DNL DNL INL $V_{\text {+FSE }}$ VBZSE $V_{\text {-FSE }}$	Codes 2048 to 2052, due to int. op amp offset $\begin{aligned} & \text { Code }=0 \times F \\ & \text { Code }=0 \times 000 \\ & \text { Code }=0 \times 800 \end{aligned}$	$\begin{aligned} & 12 \\ & -1 \\ & -1.2 \\ & -0.4 \\ & -0.75 \\ & -0.75 \\ & -0.75 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.02 \\ & -0.15 \\ & -0.15 \\ & -0.15 \end{aligned}$	$\begin{aligned} & +1 \\ & +1.2 \\ & +0.4 \\ & +0.75 \\ & +0.75 \\ & +0.75 \end{aligned}$	Bits LSB LSB \%FS \%FS \%FS \%FS
ANALOG OUTPUTS Nominal Positive Full-Scale Positive Full-Scale Tempco ${ }^{2}$ Positive Full-Scale Tempco ${ }^{2}$ Nominal VBZ Output Voltage Bipolar Zero Output Resistance ${ }^{2}$ V bz Output Voltage Tempco V bz Output Voltage Tempco Nominal Peak-Peak Output Swing	$V_{\text {outa/b }}$ TCV ${ }_{\text {outa/b }}$ TCV $V_{\text {outa/b }}$ $V_{B Z}$ $\mathrm{R}_{B Z}$ TCV ${ }_{B Z}$ TCV ${ }_{B Z}$ $\left\|\mathrm{V}_{+ \text {FS }}\right\|+\left\|\mathrm{V}_{-\mathrm{FS}}\right\|$	$\begin{aligned} & \text { Code }=0 \times 7 \mathrm{FF} \\ & \text { Code }=0 \times 7 \mathrm{FF}, \mathrm{~T}_{\mathrm{A}}=0 \text { to } 70^{\circ} \mathrm{C} \\ & \text { Code }=0 \times \text { FF, } \mathrm{T}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C} \end{aligned}$ Code 0x7FF to Code 0x800	$\begin{aligned} & -40 \\ & -60 \\ & 1.995 \\ & -40 \\ & -60 \end{aligned}$	$\begin{aligned} & 4 \\ & \pm 10 \\ & \pm 10 \\ & 2.000 \\ & 1 \\ & \pm 10 \\ & \pm 10 \\ & 4 \end{aligned}$	$\begin{aligned} & +40 \\ & +60 \\ & 2.004 \\ & +40 \\ & +60 \end{aligned}$	ppm $/{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ v Ω $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ V
DIGITAL INPUTS Input Logic High Input Logic Low Input Current Input Capacitance ${ }^{2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{L}} \\ & \mathrm{I}_{\mathrm{LL}} \\ & \mathrm{C}_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{I N}=0 \mathrm{~V} \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$	2.4	5	$\begin{aligned} & 0.8 \\ & \pm 1 \end{aligned}$	V V $\mu \mathrm{A}$ pF
POWER SUPPLIES Power Supply Range Supply Current Supply Current in Shutdown Supply Current in Shutdown Power Dissipation ${ }^{3}$ Power Supply Sensitivity	$V_{D D}$ Range IDD IdD_shin IDD_SHDN PDISS Pss	$\begin{aligned} & V_{H H}=V_{D D} \text { or } V_{I L}=0 \mathrm{~V} \\ & V_{H H}=V_{D D} \text { or } V_{I L}=0 \mathrm{~V}, \mathrm{~B} 14=0, T_{A}=0^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \\ & \mathrm{~V}_{H H}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{I L}=0 \mathrm{~V}, \mathrm{~B} 14=0, \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 0^{\circ} \mathrm{C} \\ & \mathrm{~V}_{I H}=\mathrm{V}_{D D} \text { or } \mathrm{V}_{I L}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \Delta \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% \end{aligned}$	4.5 -0.006	$\begin{aligned} & 1.8 \\ & 10 \\ & 100 \\ & 9 \\ & +0.003 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 2.6 \\ & 100 \\ & 500 \\ & 13 \\ & +0.006 \end{aligned}$	V mA $\mu \mathrm{A}$ $\mu \mathrm{A}$ mW \%/\%
DYNAMIC CHARACTERISTICS² Settling Time Digital Feedthrough Bipolar Zero-Scale Glitch Capacitive Load Driving Capability	$\begin{aligned} & \mathrm{ts} \\ & \mathrm{Q} \\ & \mathrm{G} \\ & \mathrm{CL} \end{aligned}$	0.1\% error band No oscillation		$\begin{aligned} & 0.8 \\ & 10 \\ & 10 \end{aligned}$	1000	$\mu \mathrm{s}$ nV.s nV.s pF
INTERFACE TIMING CHARACTERISTICS SCLK Cycle Frequency SCLK Clock Cycle Time Input Clock Pulsewidth Data Setup Time Data Hold Time FSYNC to SCLKActive Edge Setup Time SCLK to FSYNC Hold Time Minimum FSYNC High Time	$\begin{aligned} & \mathrm{t}_{\mathrm{crc}} \\ & \mathrm{t}_{1} \\ & \mathrm{t}_{2}, \mathrm{t}_{3} \\ & \mathrm{t}_{4} \\ & \mathrm{t}_{5} \\ & \mathrm{t}_{6} \\ & \mathrm{t}_{7} \\ & \mathrm{t}_{8} \end{aligned}$	Clock level low or high	$\begin{aligned} & 30 \\ & 15 \\ & 5 \\ & 0 \\ & 5 \\ & 0 \\ & 30 \end{aligned}$		33	MHz ns

[^1]
AD5399

ABSOLUTE MAXIMUM RATINGS

Table 3. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Rating
V_{DD} to GND	$-0.3 \mathrm{~V},+7.5 \mathrm{~V}$
$\mathrm{~V}_{\text {OUTA }}, \mathrm{V}_{\text {OUTB }}, \mathrm{V}_{\mathrm{BZ}}$ to GND	$0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$
Digital Input Voltages to GND	$0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Maximum Junction Temperature ($\mathrm{T}_{\mathrm{JAX}}$)	$150^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Package Power Dissipation	$\left(\mathrm{T}_{\mathrm{JAX}}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$
Thermal Resistance $\theta_{\mathrm{JA}}, \mathrm{MSOP-10}$	$206^{\circ} \mathrm{C} / \mathrm{W}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION AND FUNCTIONAL DESCRIPTION

CLK 1	AD5399 TOP VIEW (Not to Scale)	10 CS
SDI 2		${ }_{9} \mathrm{~V}_{\text {TP }}$
DGND 3		$8 \mathrm{~V}_{\mathrm{DD}}$
$v_{\text {OUTB }} 4$		7 AGND
$v_{\text {OUTA }} 5$		${ }_{6} \mathrm{~V}_{\mathrm{BZ}}$

Figure 3. Pin Configuration
Table 4. Pin Function Descriptions

Pin No.	Name	Description
1	CLK	Serial Clock Input. Positive edge triggered.
2	SDI	Serial Data Input. MSB first format.
3	DGND	Digital Ground.
4	V outB	DAC B Voltage Output (A0 = Logic 1).
5	V $_{\text {OUTA }}$	DAC A Voltage Output (A0 = Logic 0).
6	V $_{\text {BZ }}$	2 V, Virtual Bipolar Zero (Active Output).
7	AGND	Analog Ground.
8	V $_{\text {DD }}$	Positive Power Supply. Specified for operation at 5 V.
9	V $_{\text {TP }}$	Connect to VDD. Reserved for factory testing.
10	$\overline{\mathrm{CS}}$	Chip Select (Frame Sync Input), Active Low. When $\overline{\text { CS }}$ returns high, data in the serial input register is transferred into the DAC register.

Table 5. Serial Data-Word Format

ADDR																		DATA
B15	B14	B13	B12	B11	B10	\ldots	B3	B2	B1	B0								
A0	X	SD	0	D11	D10	\ldots	D3	D2	D1	D0								
MSB										LSB								

A0

Address Bit. Logic low selects Channel 1 and logic high selects Channel 2.

Don't Care.
Shutdown Bit. Logic high puts both DAC outputs and $V_{B Z}$ into high impedance.

Data Bits.

TIMING CHARACTERISTICS

Figure 4. Timing Diagram

Figure 5. Detailed Timing Diagram

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Integral Nonlinearity Errors

Figure 7. Differential Nonlinearity Errors

Figure 8. Supply Current vs. Supply Voltage

Figure 9. Supply Current vs. Temperature

Figure 10. Supply Current vs. Digital Input Voltage

Figure 11. Supply Current vs. Clock Frequency

Figure 12. Shutdown Current vs. Temperature

Figure 13. Load Current vs. Voltage Drop

Figure 14. Long-Term Drift

Figure 15. $V_{B Z}$ Temperature Coefficient $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Figure 16. $V_{B Z}$ Temperature Coefficient $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ to $\left.105^{\circ} \mathrm{C}\right)$

Figure 17. $V_{B Z}$ Temperature Coefficient ($T_{A}=-40^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$)

Figure 18. Large Signal Settling ($0.5 \mu \mathrm{~s} / \mathrm{D} / \mathrm{V}$)

Figure 19. Midscale Glitch and Digital Feedthrough ($2 \mu \mathrm{~s} / \mathrm{DIV}$)

Figure 20. Capacitive Load Output Performance ($2 \mu \mathrm{~s} / \mathrm{DIV}$)

OPERATION

The AD5399 provides a 12-bit, twos complement, dual voltage output, digital-to-analog converter (DAC). It has an internal reference with 2 V bipolar zero dc offset, where $0 \leq \mathrm{V}_{\text {out }} \leq 4 \mathrm{~V}$.

The output transfer equation is:
$V_{\text {OUT }}=((D-2048) / 4096 \times 4 V)+2 V$
where:
D is the 12-bit decimal data and not the twos complement code.
$V_{\text {out }}$ is with respect to ground.
In data programming, the data is loaded MSB first on the positive clock edge (SCLK) when the chip select ($\overline{\mathrm{CS}}$) input is active low. The digital word is 16 bits wide with the MSB, B15, as an address bit (DAC A: A0 $=0 ; \mathrm{DAC} \mathrm{B}: \mathrm{A} 0=1$). B 14 is don't care, B13 is a shutdown bit, B12 must be logic low, and the last 12 bits are data bits. All 16 bits clocked into the register will be transferred to the internal DAC register when $\overline{C S}$ returns to logic high.
Table 6. Input Logic Control Truth Table

CLK	$\overline{\mathbf{C S}}$	Register Activity
L	H	No Shift Register Effect
P	L	Shift One Bit in from the SDI Pin
L	P	Transfer SR Data into DAC Register
X	L	No Operation

$\mathrm{P}=$ Positive Edge, $\mathrm{X}=$ Don't Care, $\mathrm{SR}=$ Shift Register

The data setup and data hold times in the Specifications table (Table 2) determine the timing requirements. The internal power-on reset circuit clears the serial input registers to all zeros, and sets the two DAC registers to a V_{BZ} (zero code) of 2 V .

Software shutdown B13 turns off the internal REF and amplifiers. The output will be close to zero potential, and the digital circuitry remains active such that new data can be written. Therefore, the DAC register will be refreshed with the new data once the shutdown bit is deactivated.

All digital inputs are ESD protected with a series input resistor and parallel Zener, as shown in Figure 21, that apply to digital input pins CLK, SDA, and $\overline{\mathrm{CS}}$. The basic connection is shown in Figure 22.

Figure 21. Equivalent ESD Protection Circuit

Figure 22. Basic Connection

OUTLINE DIMENSIONS

Figure 23. 10-Lead MSOP Package (RM-10) Dimensions shown in millimeters

AD5399

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Table 7.

Model	Temp Range	Package	Package Code	Top Brand	Ordering Quantity
AD5399YRM	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	MSOP-10	RM-10	DSB	50
AD5399YRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	MSOP-10	RM-10	DSB	1500

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329.4700
 www.analog.com
 Fax: 781.326.8703 © 2003 Analog Devices, Inc. All rights reserved.

[^1]: ${ }^{1}$ Typicals represent average readings at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.
 ${ }^{2}$ Guaranteed by design and not subject to production test.
 ${ }^{3}$ PDISS is calculated from (loD $\times V_{D D}$). CMOS logic level inputs result in minimum power dissipation.
 ${ }^{4}$ See Timing Diagram (Figure 4) for location of measured values. All input control voltages are specified with $t_{R}=t_{F}=2 \mathrm{~ns}(10 \%$ to 90% of 3 V) and timed from a voltage level of 1.5 V . Switching characteristics are measured using $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$. Input logic should have a $1 \mathrm{~V} / \mu \mathrm{s}$ minimum slew rate.
 Specifications subject to change without notice.

