DICMOS Protected Analog Switches
 AD7510DI/AD7511DI/AD7512DI

FEATURES
Latch-Proof
Overvoltage-Proof: $\pm 25 \mathrm{~V}$
Low R_{ON} : 75Ω
Low Dissipation: 3mW
TTLCMOS Direct Interface
Silicon-Nitride Passivated
Monolithic Dielectrically-Isolated CMOS
Standard 14-/16-Pin DIPs and
20-Terminal Surface Mount Packages

DIP FUNCTIONAL DIAGRAMS

GENERAL DESCRIPTION

he AD7510DI, AD7511DI and AD7512DI are a family of latch proof dielectrically isolated CMOS switches featuring overvoltage protection up to $\pm 25 \mathrm{~V}$ above the power supplies. These benefits are obtained without sacrificing the low "ON" resistance (75Ω) or low leakage current (500 pA), the main features of an analog switch.
The AD7510DI and AD7511DI consist of four independent SPST analog switches packaged in either a 16 -pin DIP or a 20 terminal surface mount package. They differ only in that the digital control logic is inverted. The AD7512DI has two independent SPDT switches packaged either in a 14 -pin DIP or a 20-terminal surface mount package.

Very low power dissipation, overvoltage protection and TTL CMOS direct interfacing are achieved by combining a unique circuit design and a dielectrically isolated CMOS process. Silicon nitride passivation ensures long term stability while monolithic construction provides reliability.

CONTROL LOGIC

AD7510DI: Switch "ON" for Address "HIGH"
AD7511DI: Switch "ON" for Address "LOW"
AD7512DI: Address "HIGH" makes S1 to Out 1 and S3 to Out 2

REV. A

Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
hich may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

AD7510DI/AD7511DI/AD7512DI—SPECIFICATIONS

$\left(\mathrm{V}_{\mathrm{DO}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V}\right.$, unless otherwise noted.)

INDUSTRIAL VERSION (K)					
PARAMETER	MODEL	VERSION	$\begin{gathered} +25^{\circ} \mathrm{C} \\ (\mathrm{~N}, \mathrm{P}, \mathrm{Q}) \end{gathered}$	$\begin{array}{r} 0 \text { to }+70^{\circ} \mathrm{C}(\mathrm{~N}, \mathrm{P}) \\ -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}(\mathrm{Q}) \end{array}$	TEST CONDITIONS
ANALOG SWITCH $R_{\mathrm{ON}}{ }^{1}$ R_{ON} vs $\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & 75 \Omega \text { typ, } 100 \Omega \max \\ & 20 \% \text { typ } \end{aligned}$	175Ω max	$\begin{aligned} & -10 \mathrm{~V} \leqslant \mathrm{v}_{\mathrm{D}} \leqslant+10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{DS}}=1.0 \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \mathbf{R}_{\text {ON }} \text { Drift } \\ & \mathbf{R}_{\text {ON }} \text { Match } \\ & \mathbf{R}_{\text {ON }} \text { Drift } \\ & \text { Match } \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { All } \\ & \text { All } \end{aligned}$	K \mathbf{K} \mathbf{K}	$\begin{aligned} & +0.5 \% /^{\circ} \mathrm{C} \text { typ } \\ & 1 \% \text { typ } \\ & 0.01 \% /^{\circ} \mathrm{C} \text { typ } \end{aligned}$		$\mathrm{V}_{\mathrm{D}}=0, \mathrm{I}_{\mathrm{DS}}=1.0 \mathrm{~mA}$
I_{D} ($\mathrm{I}_{\text {S }}$) OFF^{1}	All	K	0.5 nA typ, 5 nA max	500 nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \text { and } \\ & \mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V} \end{aligned}$
ID (IS)ON ${ }^{1}$	All	K	10 nA max		$\begin{aligned} & V_{S}=V_{D}=+10 \mathrm{~V} \\ & V_{S}=V_{D}=-10 \mathrm{~V} \end{aligned}$
'out ${ }^{1}$	AD7512DI	K	$15 n A \max$	1500 nA max	$\begin{aligned} & v_{\mathrm{S} 1}=v_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 2}=\mp 10 \mathrm{~V} \\ & \text { and } \mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1}=\mp 10 \mathrm{~V} \end{aligned}$
DIGITAL CONTROL					
$\mathrm{V}_{\mathbf{N L} L}{ }^{1}$	All	K		0.8 V max	
$\mathrm{V}_{\text {INH }}{ }^{1}$	All			2.4 V min	
$\mathrm{C}_{\text {N }}$	All	K	7 pF typ		
$\mathrm{I}_{\text {INH }}{ }^{1}$	All	к	10nA max		$\mathrm{V}_{\mathbf{N}}=\mathrm{V}_{\text {DD }}$
$\mathrm{I}_{\mathrm{INL}}{ }^{1}$	All	K	$10 n A \max$		$\mathbf{V}_{\mathbf{N}}=0$
DYNAMIC					
${ }^{\text {ton }}$	AD7510D1	K	180ns typ		
	AD7511D1	K	350ns typ		
$t_{\text {OFF }}$	AD7510DI	K	350ns typ		$\mathrm{V}_{\mathbb{I N}}=0$ to +3.0 O
	AD7511DI	\mathbf{K}	180ns typ		
$t_{\text {TRANSITION }}$	AD7512DI	K	300 ns typ		
$\mathrm{C}_{S}\left(\mathrm{C}_{\mathrm{D}}\right)$ OFF	All	K	8 pF typ		
$\mathrm{C}_{S}\left(\mathrm{C}_{\mathrm{D}}\right)$ ON	All	K	17pF typ		
$\mathrm{C}_{\mathrm{DS}}\left(\mathrm{C}_{\mathrm{S}-\mathrm{OUT}}\right)$	All	K	$1 \mathrm{pF} \text { typ }$		$V_{D}\left(V_{S}\right)=0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{DD}}\left(\mathrm{C}_{\mathrm{ss}}\right)$	All	K	0.5 pF typ		
$\mathrm{Cout}^{\text {Of }}$	AD7512DI	K	17pF typ		
$\mathrm{Q}_{\mathrm{L},}$	All	K	30 pC typ		$\begin{aligned} & \text { Measured at S or } D \text { terminal. } \\ & C_{L}=1000 \mathrm{pF}, \mathrm{~V}_{\mathbf{N}}=0 \text { to } 3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}\left(\mathrm{~V}_{\mathrm{S}}\right)=+10 \mathrm{~V} \text { to }-10 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{I}_{\mathrm{DD}}{ }^{1} \\ & \mathrm{I}_{\mathrm{ss}}{ }^{1} \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$800 \mu \mathrm{~A}$ max $800 \mu \mathrm{~A}$ max	$800 \mu \mathrm{~A}$ max $800 \mu \mathrm{~A}$ max	All digital inputs $=\mathbf{V}_{\text {INH }}$
$\begin{aligned} & \mathrm{I}_{\mathrm{DD}}{ }^{1} \\ & \mathrm{I}_{\mathrm{ss}}{ }^{1} \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$500 \mu \mathrm{~A}$ max $500 \mu \mathrm{~A}$ max	$500 \mu \mathrm{~A}$ max $500 \mu \mathrm{~A}$ max	All digital inputs $=\mathrm{V}_{\text {INL }}$

$\underset{1}{\text { NOTES }}$
100% test
Specifica
Specifications subject to change without notice.

PIN CONFIGURATIONS

EXTENDED VERSIONS (S, T)					
PARAMETER	MODEL	VERSION	$+25^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TEST CONDITIONS
$\begin{aligned} & \text { ANALOG SWITCH } \\ & \mathbf{R}_{\text {ON }} 1 \end{aligned}$	All	S, T	100Ω max	175Ω max	$\begin{aligned} -10 \mathrm{~V} & \leqslant \mathrm{~V}_{\mathrm{D}} \leqslant+10 \mathrm{~V} \\ \mathrm{I}_{\mathrm{DS}} & =1 \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\mathrm{D}}\left(\mathrm{I}_{\mathrm{S}}\right)_{\text {OFF }}{ }^{1}$	All	S, T	3 nA max	200 nA max	$\begin{gathered} \mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \text { and } \\ \mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V} \end{gathered}$
$\mathrm{ID}^{\left(\mathrm{I}_{5}\right) \mathrm{ON}^{1}}$	All	S, T	10		$\begin{gathered} V_{S}=V_{D}=+10 \mathrm{~V} \text { and } \\ V_{S}=V_{D}=-10 \mathrm{~V} \end{gathered}$
$\mathrm{I}_{\text {OUT }}{ }^{1}$	AD7512DI	S, T	9 nA max	600 nA max	$\begin{aligned} v_{\mathrm{S} 1} & =\mathrm{v}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \\ \mathrm{v}_{\mathrm{S} 2} & =\mp 10 \mathrm{~V} \text { and } \\ \mathrm{v}_{\mathrm{S} 2} & =\mathrm{v}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \\ \mathrm{v}_{\mathrm{S} 1} & =\mp 10 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \text { DIGITAL CONTROL } \\ & \mathbf{V}_{\mathrm{INL}}{ }^{1} \end{aligned}$	All	S, T		0.8 V max	
$\mathrm{V}_{\text {INH }}{ }^{1,2}$	AD7510DI AD7511DI AD7512DI AD7511DI AD7512DI	$\begin{aligned} & \hline \mathrm{S} \\ & \mathbf{T} \\ & \mathrm{~T} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.4 \mathrm{~V} \mathrm{~min} \\ & 2.4 \mathrm{~V} \text { min } \\ & 2.4 \mathrm{~V} \text { min } \\ & 3.0 \mathrm{~V} \text { min } \\ & 3.0 \mathrm{~V} \text { min } \\ & \hline \end{aligned}$	
$\begin{aligned} & \mathbf{I}_{\mathbf{N H}_{1}^{1}}^{1} \\ & \mathbf{1}_{\mathbf{N L L}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$	$\begin{aligned} & \mathrm{S}, \mathrm{~T} \\ & \mathrm{~S}, \mathrm{~T} \end{aligned}$	$\begin{aligned} & 10_{\mathrm{nA}} \max \\ & 1 \mathrm{~m}_{\mathrm{n}} \max \end{aligned}$		$\begin{aligned} & V_{\mathbf{V}_{\mathrm{N}}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathbf{N} \mathbf{N}}=0 \end{aligned}$
DYNAMIC CHARACTERISTICS					
$\begin{aligned} & \mathrm{tON}^{3} \\ & \mathrm{tOFF}^{3} \end{aligned}$ $\text { tTRANSITION }^{3}$	AD7510DI AD7511DI AD7510DI AD7511DI AD7512DI	$\begin{aligned} & \mathrm{S}, \\ & \mathrm{~S}, \mathrm{~T} \\ & \mathrm{~S}, \mathrm{~T} \\ & \mathrm{~S}, \mathrm{~T} \\ & \mathrm{~S}, \mathrm{~T} \end{aligned}$	$1.0 \mu \mathrm{~s}$ max $1.0 \mu \mathrm{~s}$ max		$\mathrm{V}_{\text {IN }}=0$ to +3 V
POWER SUPPLY $\mathrm{IDq}_{\mathrm{lss}^{1}}{ }^{1}$	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$	$\begin{aligned} & \mathrm{S}, \mathrm{~T} \\ & \mathrm{~S}, \mathrm{~T} \end{aligned}$		$800 \mu \mathrm{~A}$ max $800 \mu \mathrm{~A}$ max	All digital inputs $=\mathbf{V}_{\text {INH }}$
$\begin{aligned} & \mathrm{I}_{\mathrm{ID}_{1}} \\ & \mathrm{I}_{\mathrm{SS}_{1}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$	$\begin{aligned} & \mathrm{S}, \mathrm{~T} \\ & \mathrm{~S}, \mathrm{~T} \\ & \hline \end{aligned}$		$500 \mu \mathrm{~A}$ max $500 \mu \mathrm{~A}$ max	All digital inputs $=\mathbf{V}_{\mathbf{N L}}$

NOTES
${ }_{1}^{2}$ A pullup resistor, typically $1-2 \mathrm{k} \Omega \Omega$ is required to make AD7511DISQ and AD7512DISQ TTL compatible.
${ }^{3}$ Guaranteed, not production tested.
Specifications subject to change without notice.
ABSOLUTE MAXIMUM RATINGS*

[^0]
AD7510DI/AD7511DI/AD7512DI—Circuit Description

Figure 1. Typical Output Switch Circuitry of AD7510DI Series

CIRCUIT DESCRIPTION

CMOS devices make excellent analog switches; however, problems with overvoltage and latch-up phenomenon necessitated protection circuitry. These protection circuits, however, either caused degradation of important switch parameters such as R_{ON} or leakage, or provided only limited protection in the event of overvoltage.
The AD7510DI series switches utilize a dielectrically isolated CMOS fabrication process to eliminate the four-layer substrate found in junction-isolated CMOS, thus providing latch-free operation.
A typical switch channel is shown in Figure 2. The output switching element is comprised of device numbers 4 and 5 . Operation is as follows: for an "ON" switch, (in +) is $\mathrm{V}_{\text {DD }}$ and (in -) is $V_{s s}$ from the driver circuits. Device numbers 1 and 2 are "OFF" and number 3 in "ON". Hence, the backgates of the P - and N -channel output devices (numbers 4 and 5) are tied together and floating. The circled devices are located in separate dielectrically isolated pockets. Floating the output switch backgates with the signal input increases the effective threshold voltage for an applied analog signal, thus providing a flatter R_{ON} versus V_{S} response.
For an "OFF" switch, device number 3 is "OFF," and the backgates of devices 4 and 5 are tied through $1 \mathrm{k} \Omega$ resistors (R 1 and R2) to the respective supply voltages through the "ON" devices 1 and 2.
If a voltage is applied to the S or D (OUT) terminal which exceeds V_{DD} or V_{SS}, the S - or D-to-backgate diode is forward biased; however, R1 and R2 provide current limiting action to the supplies.
An equivalent circuit of the output switch element in Figure 3 shows that, indeed, the $1 \mathrm{k} \Omega$ limiting resistors are in series with the backgates of the P - and N-channel output devices - not in series with the signal path between the S and D terminals.

It is possible to turn on an "OFF" switch by applying a voltage in excess of $V_{D D}$ or $V_{S S}$ to the S or D terminal. If a positive stress voltage is applied to the S or D terminal which exceeds V_{DD} by a threshold, then the P -channel (device 5) will turn on creating a low impedance path between the S and D terminals. A similar situation exists for negative stress voltages which exceed V_{Ss}. In this case the N -channel provides the low impedance path between the S and D terminals. The limiting factor on the overvoltage protection is the power dissipation of the package and is $\pm 20 \mathrm{~V}$ continuous (or 20 mA whichever occurs first) above the supply voltages.

Figure 2. AD7510DI Series Output Switch Diode Equivalent Circuit

Typical Performance Characteristics-AD7510DI/AD7511DI/AD7512DI

$R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$

$R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$

Is. IIDJoff vs v_{S}

${ }^{\text {tTRANSITION }}$ as a Function of Digital Input Voltage

${ }^{\text {toN }}{ }^{t^{\prime}}$ OFF as a Function of Temperature

${ }^{\text {tTRANSITION as a Function of Temperature }}$

AD7510DI/AD7511DI/AD7512DI

TYPICAL SWITCHING CHARACTERISTICS AD7510DI, AD7511DI
$0.5 \mu \mathrm{~s} / \mathrm{DIV}$

Switching Waveforms for $V_{D}=-10 \mathrm{~V}$

$0.5 \mu \mathrm{~s} / \mathrm{DIV}$

Switching Waveforms for $V_{D}=$ Open
$0.5 \mu \mathrm{~s} / \mathrm{DIV}$

Switching Waveforms for $V_{D}=+10 \mathrm{~V}$

Switching Waveforms for $V_{D}=O V$

AD7510DI, AD7511DI TEST CIRCUIT

Switching Waveforms for
$V_{S 1}=-10 \mathrm{~V}, V_{S 2}=+10 \mathrm{~V}, R_{L}=1 \mathrm{k}$
$0.5 \mu \mathrm{~s} / \mathrm{DIV}$

Switching Waveforms for
$V_{S 1}$ and $V_{S 2}=0 V, R_{L}=\infty$
$0.5 \mu \mathrm{~s} / \mathrm{DIV}$

Switching Waveforms for
$V_{S 1}=+10 \mathrm{~V}, V_{S 2}=-10 \mathrm{~V}, R_{L}=\infty$
$0.5 \mu \mathrm{~s} / \mathrm{DIV}$

Switching Waveforms for
$V_{S 1}$ and $V_{S 2}=O p e n, R_{L}=1 k$
AD7512DI TEST CIRCUIT

AD7510DI/AD7511DI/AD7512DI
TERMINOLOGY

R_{ON}	Ohmic resistance between terminals D and S .	$\mathrm{C}_{\text {DD }}\left(\mathrm{C}_{S S}\right)$
$\begin{aligned} & \mathrm{R}_{\mathrm{ON}} \text { Drift } \\ & \text { Match } \end{aligned}$	Difference between the $R_{\text {ON }}$ drift of any two switches.	
$\mathrm{R}_{\text {ON }}$ Match	Difference between the R_{ON} of any two switches.	t_{ON}
$\mathrm{I}_{\mathrm{D}}\left(\mathrm{I}_{\text {S }}\right)_{\text {OFF }}$	Current at terminals D or S. This is a leakage current when the switch is "OFF".	$\mathrm{t}_{\text {OFF }}$
$\mathrm{I}_{\mathrm{D}}\left(\mathrm{I}_{\text {S }}\right)_{\text {ON }}$	Leakage current that flows from the closed switch into the body. (This leakage will show up as the difference between the current I_{D} going into the switch and the outgoing current I_{s}.)	$t_{\text {transition }}$ $\mathrm{V}_{\mathrm{INI}}$. $\mathrm{V}_{\mathrm{INH}}$
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminal D(S).	
$\mathrm{C}_{S}\left(\mathrm{C}_{\mathrm{D}}\right)$	Capacitance between terminal $S(D)$ and ground. (This capacitance is specified for the switch open and closed.)	$V_{\text {DD }}$
$\mathrm{C}_{\text {DS }}$	Capacitance between terminals D and S. (This will determine the switch isolation over frequency.)	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{SS}} \end{aligned}$

Capacitance between terminals $D(S)$ of any two switches. (This will determine the cross coupling between switches vs. frequency.)
Delay time between the 50% points of the digital input and switch "ON" condition
Delay time between the 50% points of the digital input and switch "OFF" condition.
Delay time when switching from one address state to another
Maximum input voltage for a logic low
Minimum input voltage for a logic high
Input current of the digital input.
Input capacitance to ground of the digita input

Most positive voltage supply
Most negative voltage supply
Positive supply current
Negative supply current.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
14-Pin Cerdip Package (Suffix Q)

16-Pin Plastic DIP (Suffix N)

[^0]: REV. A

