PEATURES
Ah Grades 14-Bit Monotonic Over the Full Tempera-

ture

Range
Pull 4-Ouadrant Multiplication
Microprocessor-Compatible with Double Buffered inputs
Exceptionally Low Gain Temperature Coefficient, $0.5 \mathrm{ppm} / \mathrm{C}$ typ
Small 20-Pin DIP and Surface Mount Package
Low Outpert Leakage (<2OnA) Over the Full
Temperature Range

APPLICATIONS

Mieroprocessor Based Control Systems

Digital Audio Roconstruction
High Precision Servo Contro
Control and Messurement in High Temperature Environments

GENERAL DESCRIPTION

The AD7534 is a 14-bit monolithic CMOS D/A converter which uses thin-film resistors and laser trimming to achieve excellent linearity.
The device is configured to accept righr-justified data in iwo bytes from an 8 -bit dura bus. Standard Chip Select and Memory Write logic is used to access the DAC. Address lines A0 and A1 control internal register loading and transfer.
A novel low leakage configuration (patent pending) enables the AD7534 to exhibit excellent output leakage current characteristics over the specified temperature range.
The device is fully prorected against CMOS "latch up" phenomena and does not require the use of external Schottky diodes or the usc of a FET Input op amp. The AD7534 is manufactured using the Lincar Compatible CMOS (I.C ${ }^{2}$ MOS) process. It is speed compatible with most microprocessors and accepts TTL or CMOS logic level inputs.

REV. A

Information furnished by Anelog Devices is believed to be accurate and relisble. However. no responsibility is suumed by Analog Devices pertice which may result from its use. No license is grented by implice tion or otherwise under any petent or patent rights of Analog Devicas.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. Guaranteed Montonicity

The AD7534 is guaraniced monotonic to 14 -bits over the full cemperature range for all grades.
2. Low Output Leakage

By tying $V_{\text {SS }}$ (Pin 20) to a negative voltage, it is possible to achieve a low output leakage current at high temperatures.
3. Microprocessor Compatibility

High speed input control (TTL/SV CMOS compatible) allows direct interfacing to most of the popular 8 -bit and 16 -bit microprocessors.
4. Monolithic Construction

For increased reliabiliry and reduced package size - 0.3" 20-pin DIP and 20-terminal surface mount package

Trese chargeteritios are incuded for Desizg Gridance orit and

Prameter	$\begin{aligned} & V_{D 0}=+11.4 \mathrm{~V} 10+15.75 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{CT} T_{A}=T_{\operatorname{mon}}, T_{\mathrm{mpa}} \end{aligned}$		Units	Teur CondinionelCommont
Ourput Current Setlint Time	1.5	-	$\mu_{\text {max }}$	To 0.003% of full scalc range. lout loed = 10011, $\mathrm{C}_{\mathrm{EXT}}=13 \mathrm{pF}$. DACregiser altermately coeded with all l'is and all 0 's.
Diequal 10 A malog Giich Impulse	100	-	nV-sectyp	Typical value of Sectling Time is $0.8 \mu \mathrm{~s}$. Mescured with $\mathrm{V}_{\text {REF }}=\mathrm{OV}$. $\mathrm{I}_{\text {OUT }}$ loed $=100$ n $^{\prime} \mathrm{C}_{\mathrm{EXT}}=33 \mathrm{pF}$. DAC. reginter Alternately looded with all l's and allo's.
Mutiplying Feedthrough Error	3	5	mV p-psyp	$\mathrm{V}_{\text {KEF }}= \pm 10 \mathrm{~V}, 10 \mathrm{H} \mathrm{Hz}_{2}$ rise wave DACregiser inaded with all 0 's.
Power Supply Reipation $\Delta G_{i n} / V_{\text {no }}$ OutpurCaperivence	± 0.01	$=0.02$	\% per \% max	$\Delta V_{D O}= \pm 5 \%$
	260	260 130	PF max	DAC. regineer londed with all 1 's
$\begin{aligned} & \text { Cout (Pin 3) } \\ & \text { Outpur Nois Voltase Densily } \\ & (10 \mathrm{~Hz} 2-100 \mathrm{~Hz}) \end{aligned}$	130 15	130	DF max aVi $\sqrt{\mathrm{H}_{2}}$ typ	DACreriver loeded wich all 0 's Mcesured beween $\mathrm{R}_{\text {Fin }}$ and $\mathrm{I}_{\text {Mit }}$

NOTES

A, Bersions: $-25^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$

Guarnnteed by Product Assurencer testing.

ABSOLUTE MAXIMUMRATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless ocherwise stated)	Operating Temperature Range
$V_{\text {mn }}($ Pin 19) to DGND -0.3V, $+17 \mathrm{~V}$	Commercial (J, K Versions)
Vss (Pin 20) to AGND -15V, +0.3V	Industrial ($1, \mathrm{~B}$ Versions)
$\mathrm{V}_{\text {amp }}(\mathrm{Pin} 1)$ to AGND $\pm 25 \mathrm{~V}$	Extended (S, T Versions)
V ${ }_{\text {RFs }}$ (Pin 2) to AGND $\pm 25 \mathrm{~V}$	Storage Temperature
Digital Input Voltage (Pins 7-18) to DGND . . -0.3V, Vnd	Lead Temperature (Solderin
V PNS $^{\text {to }}$ DGND $-0.3 \mathrm{~V}, \mathrm{~V}_{\text {DD }}$	
AGND to DGND -0.3V, VDD	permanent damage to the device.
Power Dissipation (Any Package)	operation of the device at these
To + $75^{\circ} \mathrm{C}$. 450mw	indicated in the operational scction
Derates above $+75^{\circ} \mathrm{C}$. $6 \mathrm{mw} /{ }^{\circ} \mathrm{C}$	Exposure to absolute maximum rating affect device reliability.
CAUTION	
ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices ure inserted.	

Moded	$\begin{aligned} & \text { Temperature } \\ & \text { Ronte } \end{aligned}$	Relative Accuracy	Full Scale Error	Package Option*
AD7534]N	$0^{\circ} \mathrm{C}$ +10 $+70^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\pm 8 \mathrm{LSB}$	N-20
AD7534KN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	\pm ILSB	$\pm 4 \mathrm{LSB}$	N. 20
AD7534]P	$0^{\circ} \mathrm{C}$ zo $+70^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\pm 8 L S B$	P-20A
AD7534KP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	\pm LSB	$\pm 4 \mathrm{LSB}$	P-20A
AD7534AQ	$-25^{\circ} \mathrm{C}$ wo $+85^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\pm 8 \mathrm{LSB}$	Q-20
AD7534BQ	$-25^{\circ} \mathrm{C}$ ro $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 4 \mathrm{LSB}$	Q.20
AD7534SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 2 L S B$	± 8 LSB	Q-20
AD7534TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	\pm ILSB	$\pm 4 \mathrm{LSB}$	Q-20

[^0]
AD7534

TERMDNOLOGY

belative accuracy
Relative socuracy or eadpoint nonlinearity is a measure of the maximum devistion from a straight line pessing throngh the endpoints of the DAC transfer function. It is mesured after adjusting for zero error and full scale error and is normally expresed in Least Significant Bits or as a percentage of ful scale remding.
DIFFERENTIAL NONLINEARITY
Differentinl noolinearity is the difference between the measured change and the ideal ILSB change berween any two adjacent codes. A specified differencial nonlinearity of \pm ILSB max over the operating temperature range ensures monotonicity.

FULLSCALE EBROR

Full scale error or gain error is a measure of the output error between an ideal DAC and the actual device output. Full scale ecror is adjustable to zero with an external potentiometer.

DIGTTAL TO ANALOG GLITCH IMPULSE
The amount of charge injected from the digital inputs to the analog output when the inputs change state. This is normally specified as the area of the glitch in either pA-secs or nV -secs depending upon whether the glitch is measured as a current or vodage. The meanurement takes place with $\mathrm{V}_{\mathrm{REP}}=$ AGND.

OUTPUT CAPACITANCE

Capacitance from Iour to AGND
OUTPUT LEARAGE CURPENT
Current which appears at Iour with the DAC register londed to all 0 's.

MULTIPLYING FEEDTHROUGH ERRO
AC error due to capacitive feedthrough from $V_{\text {REF }}$ terminal to Iour with DAC register loaded to all zeros.
rin configurations

Figure 1. AD7534 Timing Diagram

AD7534

Figure 2. Simplified Circuit Diagram for the AD7534 D/A Section

CIRCUIT BPORMATION - D/A SBCTION
Figure 2 shows a simplified circuit diagram for the AD7534 D/A section. The three MSB's of the 14-bit Data Word are decoded to drive the scren switches A-G. The 11 LSB's of the Data Word drive an inverted R-2R ladder which steess the binarily weighted current available to it between Iout and AGNDF.
If I is taken as the input current at $\mathrm{V}_{\text {rear }}$ the input curreat to the R-2R indder is V8. 78 I flows in the paralilel ladder structure. Switches A-G weer binarily weighted current between lour and AGNDF.
The input resistasce at $V_{\text {Rer }}$ is constant and anay be driven by a voluges source or a curreat source of positive or negadive polarity.

EQUIVALENT CERCUTT ANALYSIS

Figure 3 shows an equivelent circuit for the analog section of the AD7534 D/A converter. The current source $\mathrm{I}_{\text {Lifarage }}$ is composed of surface and junction leakages. The resistor R_{0} desotes the equivalent output resistance of the DAC which varies with input code. Cour is the capacitance due to the current steering switches and varies from about 90 pF to 180pF (typical whes) depending upon the digital input. $g\left(V_{\text {REF }}, N\right)$ is the Thevenin equivilear volage generator due to the reference

Figure 3. AD7534 Equivalant Analog Output Circuit
input voltage, $\mathbf{V}_{\text {Rer }}$, and the transfer function of the R-2R ladder, N.

CRCUIT INFODMATION - DIGITAL SECTION

The digital inputs are designed to be both TTL and SV CMOS compatible. All logic inputs are static protected MOS gates with typical input currents of less than $\ln A$. Internal input protection is achieved by an on-chip distributed diode from DGND to each MOS gate. To minimize power supply currents, it is recommended that the digital input voluges be driven as close as possible to 0 and 5V logic levels.

Applying the AD7534

UNIPOLAR BENARY OPERATION
(2-QUADEANT MULTIPLICATION)
Figure 4 shown the circuit diagram for unipoler binary operation. With an ac input, the circuit performa 2 -quadrant multiplication. The code uble for Fisure 4 is ziven in Table 1 .
Capucior Cl provides phase compensation and heips prevent overshoor sad ringing when high speed op-amps ere used.

Figure 4. Unipolar Binary Operation

Elany Number Is DACReginter	Amalog Outpret, Vout
$\begin{array}{lc} \text { MSB } & \text { LSB } \\ 111111 & 1111 \end{array}$	$-V_{D N}\left(\frac{16393}{16384}\right)$
10000000000000	$-V_{\mathbf{N N}}\left(\frac{8192}{16384}\right)=-1 / 2 \mathrm{~V}_{\mathrm{DN}}$
00000000000001	$-\mathrm{V}_{\mathrm{IN}}\left(\frac{1}{16384}\right)$
00000000000000	OV

Teble 1. Unipolar Binary Code Table for AD7534
2ERO ORFSET AND GANN ADJUSTMENT FOR FIGURE 4.
Calibration codes for zeso and full scale adjust (all 0 's, all 1's) can be londed in one write operation (see Pin Function Description).
Zeso Ofiect Adjustment

1. Load DAC register with all 0's.
2. Adjuet offivet of amplifier $A 1$ so that \mathbf{V}_{0} is at a minimum (i.e., $\leq 30 \mu \mathrm{~V}$).

Gain Acjumbert

1. Lond DAC register with all l's.
2. Trim potentiometer R 3 so that $\mathrm{V}_{\mathrm{O}}=-\mathrm{V}_{\mathrm{DN}}\left(\frac{16383}{\mathrm{~J} 6384}\right)$

In fixed reference applications full scale can also be adjusted by ocaituing R3 and R4 and trimming the reference voltage magnitude.

For high temperaturc applicutions, resistors and porentiometers should have i low Temperature Coefticient. In many applications, because of the excellent Gain T.C. and Gain Error specifications of the AD7534, Gain Error trimoring is not necessary

bToLAR OPERATION

(4QUADRANT MULTIPLICATION)
The recommended circuit dingram for bipolar operation is shown in Figure 5. Offset binary coding is used.
With the DAC loaded to 10000000000000 , adjust R3 for V_{0} $=0 V$. Alternatively, one can omit R3 and R4 and adjust the $=0 V$. Alrernatively, one can omit $R 3$ and $R 4$ and adjust the
ratio of $R 7$ and $R 8$ for $V_{0}=0 V$. Full scule trimming can be accomplished by adjuating the amplitude of $V_{\text {IN }}$ or by varying the value of $R 9$.
Resistors R7, R8 and R9 should be matchod to 0.003\%. Mismatch of R7 and R8 causes both offeet and full scale error. When operating over a wide temperature range, it is impornant that the resistors be of the same type so that their temperature coefficient match.
The code table for Figure 5 is given in Table II.

Figure 5. Bipolar Operation

Rinary Number in DACRegiater MSB LSE	AnalogOutput
11111111111111	$+V_{\text {IN }}\left(\frac{8191}{8192}\right)$
10000000000001	$+V_{\text {DN }}\left(\frac{1}{8192}\right)$
10000000000000	0
01111111111111	$-V_{\mathrm{DN}}\left(\frac{1}{8192}\right)$
00000000000000	$-V_{\mathrm{DN}}\left(\frac{8192}{8192}\right)$

Table II. Bipolar Code Table for Offset Binary Circuit of Figure 5.

AD7534

GROUNDING TECHNIQUES

Since the AD7534 is specified for high accurcey, it is important to use a proper grounding lectnique. The two AGND pins (AGNDF and AGNDS) provide 解证ility in this respect. In Figure 4, AGNDS and AGNDF are externally ahorted and A2 is not used. Voltuge drops due to bond wire retistances are not compensated for in this circuit. This means that an extra lincerity etror of less then 0.11 SB ia added to the DAC linearity error. If the ueer withen to dimiote this torn arme then the imit of
Figure 6 should be used. Here, A_{2} is used to mainrain AGNDS

CONTROL INPUTS OMITEO FOR CLARITY
Figure 6. Unipolar Binary Operation with Forced Ground

ZERO OFFSET AND GAIN ADJUSTMENT FOR

FIGURE 6

Zero Ofiset Admament

1. Loed DAC register with all 0 's.
2. Adjust offet of amplifier $A 2$ for minimum potencial at $A G N D S$. This potential should be $\leq 30 \mu \mathrm{~V}$ with retpect to Signal Ground.
3. Adjust offset of amplifier $A 1$ so that V_{O} is at a minimum (i.c. $\leq 30 \mu \mathrm{~V}$).

Gaim Adjuscmeat
Gain Adjument

1. Loed DAC register with all l's.
2. Trim potenciocmeter R^{2} so that $\mathrm{V}_{\mathrm{O}}=-\mathrm{V}_{\mathrm{n}}\left(\frac{16383}{16384}\right)$

AD7534

LOW LEAKAGE CONFIGURATION

For CMOS Multiplying D/A coaverters, as the device is opented at higher temperatures the output leakage current increases. For a 14-hir resolution system, this can be a significant source of error. The AD7534 features a leakage reduction configuration to keep the leakage current low over an extended temperature range. One may operate the device with or without this config. uration. If V_{ss} (pin 20) is tied to AGND then the DAC will exhibit normal output leakage current at high temperames. To use the low leakage facility, V5s should be tied to a voltage of approximately -0.3 V as in Figures 4, 5 and 6. A simple resistor divider (R5, R6) produces -312 mV from -15 V . The capecitor C2 in parallei with R6 is an integral part of the kow kakage configaration and must be $4.7 \mu \mathrm{~F}$ or greater. Figure 8 is a plot of leakage current versus temperature for both conditions. It clearly shows the improvement gained by usiag the low leakage configunation.

OP AMP SELECTION

In choosing an amplifier to be used with the AD7534, three
perametert are of prime importance. These are Input Offiet Volage ($V_{\text {or }}$), Input Biss Current, (I $I_{\text {gns }}$) and Offset Voltage Drift. To maintain specified accuracy with $V_{\text {per }}$ at 10V, Vos must be less than $30 \mu \mathrm{~V}$ while $\mathrm{I}_{\text {gas }}$ should be less than 2 nA . Also the open loop gin of the amplifier muar be Ass the open loop gain of the amplifer must be sumiciendy
high to keep $V_{o s} \leq 30 \mu \mathrm{~V}$ for the full output volage renge. Thu high to keep $V_{o s} \leq 30 \mu \mathrm{~V}$ for the full output voltage renge. Thus
for a max output of 10 V , Avos. must be greater than 340,000 .

An amplifier with low offset voltage drift is required to give the desired aystem accuracy over an operating remperature range. At low frequencies the AD OP-07 satiafies the above requirement and in most ceses will not need an offier adjust porentiometer.
For high frequency operation, one may use a wide bandwidth amplifier such as the ADS44 or the I.F356 with either an offeet adjust porentiometer or automatic nuling circuitry.
The choice of amplifier depends entirely on the required system accuracy, the required temperature range, and the operating frequency.

Figure 8. Graph of Typical Leakege Current vs. Temperature for AD7534

AD7534

MICROPROCESSOR INTERFACING

AD7534-8085A INTERFACE
A typical interfice circuit for the AD7534 and the 8085A mieroprocessor is given in Figure 9 . The micropprocessor sees the DAC as four memory locations, identified by address lines $A O$, AI. In standard operation, three of thexe mermory locations are used. A semple program for loading the DAC with a 14 bit word is given in Table III. The AD7534 has address locations 3000-3003.
The six MSBs are written into location 3001 , and the eight LSBz are writen to 3002 . Then with a write inatruction to 3003

OMIEAR CIRCUTRY
Figure 9. A07534-8085A Interface
the full 14-bit word is looded to the DAC register and the analog equivalent appears at the output

AD753 - 8006 INTRRPACE

The AD7534 may be interfaced to the 16 -bit 8086 microprocessor using the circuit of Figure 10. The bottom 8 bita (ADO-ADD) of the 16 -bit data bua are connected to the DAC data bus. The 14 bit word is londed in two bytes using the MOV instruction. A further MOV londs the DAC register and crusea the analog. data to appear at the converter output. For the exmople given there, the appropriate DAC register addresser are D002, D004 DOO6. The program for loading the DAC is given below in Table IV.

Figure 10. AD7534-8086 Interface Circuit

Address	Op-Code	Mnemonic
2000	26	MVIH, \# 30
01	30	
02	2E	MVIL,* 01
03	01	
04	3E	MVIA,* "MS"
05	"MS"	
06	77	MOVM, ${ }^{\text {A }}$
07	2C	INRL
08	3E	MVIA,* "LS"
09	"LS"	
0 A	77	MOVM, ${ }_{\text {a }}$
OB	2C	NRRL
$0 C$	77	MOVM, ${ }^{\text {A }}$
200D	CF	RSTI

Table III. Program Listing for Figure 9
ASSUME DS: DACLOAD, CS : DACLOAD
dACLOAD SEGMENT AT COO

00	$8 \mathrm{CC9}$	MOVCX,CS	: DEFINEDATA SEGMENT REGISTER EQUAL
02	8ED9	MOVDS, CX	: TOCODESEGMENT REGISTER
04	BF02D0	MOV DI, * D002	: LOAD DI WITH D002
07	C605"MS"	MOV MEM, * "MS"	: MSINPUT REGISTER LOADED WITH "MS"
OA	47	INC DI	
08	47	INCDI	
0 C	C605"LS"	MOV MEM,* "LS"	: LSINPUT REGISTER LOADED WITH "LS"
OF	47	INCDI	
10	47	INCDI	
11	C60500	MOV MEM, * 00	: CONTENTSOFINPUTREGISTERS ARE LOADED TOTHE DACREGISTER.
14 17	$\begin{aligned} & \text { EAOOOO } \\ & \text { OOFF } \end{aligned}$	JMP MEM	: CONTROL IS RETURNEDTOTHE MONITOR PROGRAM

Table IV. Sample Program for Loading AD7534 from 8086

AD7534

AD7534-MC6809 INTERFACE

Fisure 11 shows an interfice cirenit which enables the AD7534 to be programmed using the MC6809 8 -bit microprocessor. By making use of the 16-bit D Accumulator, the unansfer of data is simplified. The two key processor insuructions are:

LDD Loed D Accumulator from memory
STD Store D Accumulator to memory.

Figure 11. AD7534 - MC6809 Interface Circuit

AD7534-6502 INTERFACE

The interfice circuit for the 6502 microprocesor is shown is Figure 12.

Figure 12. AD7534-6502 interface

AD7534-280 INTERFACE

Interfacing to the 280 microprocessor requires a minimal amount of extra components. The circuit consists of the 280 processor, the AD7534 and a0 address decoder for the DAC. Fisure 13, below, illustrate the circuit.

Figure 13. AD7534-280 interface

AD7534

AD7534 - MC6000 INTERFACE
Interfacing between the MC68000 and the AD7534 is accomplished using the circuit of Figure 14. The following routine writes datu to the DAC input registers and then outputs the data via the DAC register.

	- 2^{28003}		
1000	MOVE. ${ }^{\text {P }}$	* W, $^{\text {D }}$	The deninad DAC entre, W, is boeded ineo Dron Regitree 0. T\% maybe any vilue betwere 0 and 16383 (dacimel) or 0 sod 3FFP (herstecirmel).
	MOVEP.W	10,50000(A2)	The deta Win triesfaried bermea DO and ive loque teginers of the DAC. The high orded byte of datais traseferred liru. The mermory addremis specifiod usios the eddrus ryipter indirect phus dimplocemene addresing mode. The eddrue and is this inernoce (BCO3) in add end ro dent in tremerred ca the low onder belf of the dena bes: (DO-D7).
	MOVE. ${ }^{\text {W }}$	D0, \$8006	This inaroction purides appropiete upmis mo ranafer the dean 7 from the DAC Loput Regivecen to the DAC Regiter, wirich costrola the swircibes in the 14-bis D/A strecture.
	move. ${ }^{\text {B }}$	- 228,17	Coarrol in renurned nothe Symem Monito Progrean using these two inaructions.

Since oaly the lower half of the Data Bus is used in this interfacing syetem, it is also suitable for use with the MC68008. This provide the wser with an eirht bit data bus instead of the MC68000's sixteen bit data bus.

DIGTRAL FEBDTHROUGH

In the preceeding interfece configurations, mort digital inputs to the AD7534 are directly connected to the microprocestor bus. Even when the device is not selected, these inputs will be constantly chnoging. The high frequeacy logic activity on the bus can feed through the DAC peckege capecitance to show up as noise on
the salag output. To minimize this digital feedthrough isolate the. DAC frosn the noise cource. Figure 15 shows an interface circuit which physically isolstes the DAC from the bus. One may also use other means, such as peripheral interface devices to reduce the digital feedthrough

Figure 14. AD7534-MC68000 Interface

igure 15. AD7534 interface Circuit Using Latches to Minimize Digital Feedthrough

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm)

[^0]: $* N=$ Plantic DIP; $P=$ Plestic Leeded ChipCarier; $\mathrm{Q}=$ Cendip.

