LC²MOS 14-Bit μ P Compatible DAC

AD7536

FEATURES
Full 4-Quadrant Multiplication without External
Resistors
All Grades 14-Bit Monotonic over the Full Temperature Range
Low Output Leakage ($20 n A$) over the Full
Temperature Range
Low Gain Temperature Coefficient, $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

APPLICATIONS

Control and Measurement in High Temperature

Environments

Digital Audio
Precision Servo Control
All Microprocessor Based Control Systems

GENERAL DESCRIPTION

The AD7536 is a l4-bit monolithic CMOS D/A converter. The part is laser trimmed and specified as a dedicated bipolar DAC The resistors needed for 4 -quadrant multiplication are contained on the chip. Thus, the user requires only the AD7536, a voltage reference and two op-amps for bipolar operation. The AD7536 has the same low leakage configuration (patent pending) as the other members of the $1+$-bit CMOS DAC family. The excellent output leakage current characteristics also ensure exceptional stability of linearity and gain error over the full temperature range.
The device is speed compatible with most microprocessors and accepts TTL or 5 V CMOS logic level inputs. There is standard Chip Select and Memory Write logic for easy interfacing. The AD7536 has full protection against CMOS "latch-up" phenomena and does not require the use of external Schottky diodes or the use of a FET Input op-amp
PIN CONFIGURATIONS

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Device for its use; nor for any infringements of patents or other rights of third tion or Otherwise under any patent or patent rights of Analog Devices.

One Technology Way;	Norwood, Massachusetts $02062-9106$	
Tel: 617/329-4700		TWX: 710/394-6577
West Coast	Mid-West	Texas
714/641-9391	$312 / 350-9399$	$214 / 231-5094$

SDENTFIP ${ }^{1} 300 \mathrm{mV}$ All specifications T AD7336-SPECIFIGATINS for Suggested Specification Circuit³)

Parameter	$\begin{aligned} & \text { AD7536JN } \\ & \text { AD7536AQ } \end{aligned}$	$\begin{aligned} & \text { AD7536KN } \\ & \text { AD7536BQ } \end{aligned}$	AD7536SQ	AD7536TQ	Units	Test Conditions/Comments
accuracy						
Resolution	14	14	14	14	Bits	$1 \mathrm{LSB}=2 \mathrm{~V}_{\text {ReFF }} / 2^{14}$
Relative Accuracy	± 2	± 1	± 2	± 1	LSB max	All grades guaranteed monotonic
Differential Nonlinearity	± 1	± 1	± 1	± 1	LSB max	over temperature.
Gain Error	± 16	± 8	± 16	± 8	LSB max	Measured using internal $R_{F B}$ and includes effects of leakage current and gain T.C.
Offsel Error	± 4	± 4	± 4	± 4	LSB max	Error due to mismatch between R_{FB} and offset resistor. It also includes leakage current to $\mathrm{I}_{\mathrm{OUT}}$ and is measured when DAC is loaded with all 0's.
Gain Temperature Coefficient ${ }^{4}$,						
Δ Gain/ Δ Temperature Offset Temperature Coefficient ${ }^{4}$	± 5	± 5	± 5	± 5	ppm/ ${ }^{\text {C }}$ max	Typical Value is $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Δ Offsel/ Δ Temperaure	± 5	± 2.5	± 5	± 2.5	ppm $/ 2 \mathrm{C}$ max	Typical Value is $\mathrm{Ippm} /{ }^{\circ} \mathrm{C}$
InPut Resistances						
$\mathrm{V}_{\text {Ref }}$ Input Resistance, Pin 2	3	3	3	3	$k \Omega$ min	Typical Input Resistance $=6 \mathbf{k} \Omega \mathbf{}$
	13	13	13	13	$k \Omega$ max	
$\mathrm{V}_{\text {INV }}$ Input Resistance, Pin 28	2	2	2	2	$k \Omega$ min	Typical Input Resistance - $4 \mathrm{k} \Omega$ I
	8	8	8	8	$\mathrm{k} \Omega$ max	
DIGITALINPUTS						
$\mathrm{V}_{\text {IH }}($ Input High Voltage)	2.4	2.4	2.4	2.4	$V_{\text {min }}$	
$\mathrm{V}_{\text {II }}$ (Input Low Voltage)	0.8	0.8	0.8	0.8	$\mathrm{V}_{\text {max }}$	
$\mathrm{I}_{\text {IN }}$ (Input Current)						
+ $25^{\circ} \mathrm{C}$	± 1	± 1	± 1	± 1	$\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }} \mathbf{0} \mathbf{V}$ or $\mathrm{V}_{\text {D }}$
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	± 10	± 10	± 10	± 10	$\mu \mathrm{A}$ max	
$\mathrm{C}_{\text {IN }}(\text { Inpui Capaciance })^{4}$	7	7	7	7	$\mathrm{pF}^{\text {max }}$	
POWER SUPPLY						
$\mathrm{V}_{\mathrm{DID}}$ Range	11.4/15.75	11.4/15.75	11.4/15.75	11.4159.75	$\mathrm{V}_{\text {min }} / N_{\text {max }}$	Specification guaranteed over
v_{sS} Range	200/500	200- - 500	200/ 500	200'-500	mV min/mV max	this range. ${ }^{\text {d }}$
I_{DL})	50	500	500	500	${ }_{\text {mA max }}$	All digital inputs $\mathrm{V}_{\text {II }}$ or $\mathrm{V}_{1 H}$
Power Supply Rejection						
$\Delta \mathrm{Gain} / \Delta \mathrm{V}_{\mathrm{DD}}$	± 0.02	± 0.02	± 0.02	± 0.02	\% per \% max	$\Delta \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{DD}}$ max $-\mathrm{V}_{\mathrm{DD}}$ min

AC PERFORMANCE

CHARACTERISTICS See Figure 6 for Suggested Specification Circuit').

\square AD7536

Parameter	Limit at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Limit at $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	Limitat$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { Units }$		Test Conditions/Comments
t_{1}	0	0	0	ns min	$\overline{\overline{C S M S B}}$ or $\overline{\text { CSLSB }}$ to $\overline{\text { WR }}$ Setup Time
t_{2}	0	0	0	ns min	$\overline{\text { CSMSB }}$ or CSLSB to $\overline{\text { WR }}$ Hold Time
t_{3}	170	200	240	ns min	LDAC Pulse Width
L_{4}	170	200	240	ns min	Write Pulse Width
ts	140	160	180	ns min	Data Setup Time
t_{6}	20	20	30	ns min	Data Hold Time

Specifications subject to change without notice.

ORDERING INFORMATION				
	Temperature Range	Relative Accuracy	Full Scale Error	Package Options
Model	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\pm 16 \mathrm{LSB}$	$\mathrm{N}-28$
AD7536JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 8 \mathrm{LSB}$	$\mathrm{N}-28$
AD7536JP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\pm 16 \mathrm{LSB}$	$\mathrm{P}-28 \mathrm{~A}$
AD7536KP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 8 \mathrm{LSB}$	$\mathrm{P}-28 \mathrm{~A}$
AD7536AQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\pm 16 \mathrm{LSB}$	$\mathrm{Q}-28$
AD7536BQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 8 \mathrm{LSB}$	$\mathrm{Q}-28$
AD7536SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\pm 16 \mathrm{LSB}$	$\mathrm{Q}-28$
AD7536TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 8 \mathrm{LSB}$	$\mathrm{Q}-28$
AD7536SE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\pm 16 \mathrm{LSB}$	$\mathrm{E}-28 \mathrm{~A}$
AD7536TE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 8 \mathrm{LSB}$	$\mathrm{E}-28 \mathrm{~A}$

PRICING ($100+$) $\$$
AD7536JN $\$ 18.95$ AD7536KN $\$ 28.45$
AD7536AD $\$ 28.95$
AD7536BD $\quad \$ 38.45$
AD7536SD $\$ 80.70$
AD7536TD $\$ 113.05$

AD7536

ABSOLUTE MAXIMUM RATINGS
V_{DD} (pin 26) to DGND $-0.3 \mathrm{~V},+17 \mathrm{~V}$
$\mathrm{V}_{\mathrm{ss}}(\mathrm{pin} 27)$ to AGND $-15 \mathrm{~V},+0.3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{REF}}$ (pin 2) to AGND $\pm 25 \mathrm{~V}$
$\mathrm{V}_{\text {INV }}$ (pin 28) to AGND $\pm 25 \mathrm{~V}$
$\mathrm{R}_{\text {INT }}$ (pin 1) to AGND $\pm 25 \mathrm{~V}$
Digital Input Voltage (pins 8-25) to DGND . . -0.3V, V
$V_{\text {PIN4 }}$ to DGND $\quad-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$
AGND to DGND $-0.3 V, V_{D D}$
Power Dissipation (Any package)
To $+75^{\circ} \mathrm{C}$. 1000 mW

Derates above $+75^{\circ} \mathrm{C}$. $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range
Commercial Plastic (JN, KN versions) . . . 0 to $+70^{\circ} \mathrm{C}$ Industrial Ceramic (AQ, BQ versions). $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Extended Ceramic (SQ, TQ versions). $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 secs) $+300^{\circ} \mathrm{C}$
*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

ESD (Electro-Static-Discharge) sensitive device. The digital control inputs are diode protected; how ever, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged o the destination socket before devices are removed.

TERMINOLOGY

LEAST SIGNIFICANT BIT (LSB)

This is the analog weighting of 1 bit of the digital word in a
DAC. For the AD7536 1LSB $=\frac{2 \mathrm{~V}_{\mathrm{REF}}}{2^{14}}$

RELATIVE ACCURACY

Relative accuracy or end point nonlinearity is a measure of the maximum deviation from a straight line passing through the end-points of the DAC transfer function. It is measured after adjusting for both endpoints (i.e., Offset and Gain Error are adjusted out) and is normally expressed in Least Significant Bits or as a percentage of full scale range.

DIFFERENTIAL NONLINEARITY

Differential nonlinearity is the difference between the measured change and the ideal lLSB change between any two adjacent codes. A specified differential nonlinearity of +1LSB max over the operating temperature range ensures monotonicity

GAIN ERROR

Gain error is a measure of the output error between an ideal DAC and the actual device output with all one's loaded after offset error has been adjusted out. Gain error is adjustable to zero with an external potentiometer

OFFSET ERROR

Offset error is a measure of the mismatch between $R_{F B}$ and the internal offset resistor, $\mathrm{R}_{\mathrm{OFs}}$. It also includes the leakage component from the DAC (see Figure 8). It is present for all codes and is expressed in Least Significant Bits.

DIGITAL-TO-ANALOG GLITCH IMPULSE

The amount of charge injected from the digital inputs to the analog output when the inputs change state is called Digital-to-Analog Glitch Impulse. This is normally specified as the area of the glitch in either pA-secs or nV -secs depending upon whether the glitch is measured as a current or voltage. It is measured with $\mathrm{V}_{\mathrm{REF}}=\mathrm{AGND}$.

OUTPUT CAPACITANCE

This is the capacitance from Iout to AGND.

LEAKAGE CURRENT

Leakage current flows into $\mathrm{I}_{\text {OUT }}$ from the 14 -bit DAC when al the DAC switches are off. It contributes to the Linearity, Gain and Offset error (see Figure 8).

MULTIPLYING FEEDTHROUGH ERROR

This is the ac error due to capacitive feedthrough from $\mathrm{V}_{\mathrm{REF}}$ terminal to $\mathrm{I}_{\text {OUT }}$ with DAC register loaded with 10000000000000.

AD7536

Figure 3. Simplified Circuit Diagram of the AD7536
D/A Section Showing Connection of External Op-Amps

CIRCUIT INFORMATION - D/A SECTION

Figure 3 is a simplified circuit diagram of the AD7536 D/A section and it also shows the external op-amp connection. The device is a 14 -bit DAC with three extra resistors on chip for bipolar operation. It is configured so that the coding is Offset Binary. The 14-bit DAC consists of an R-2R ladder for the lower eleven bits (switches S0-S10). The three MSB's are decoded to drive switches A-G sequentially. Each of these carries an equally weighted current which is also equal to the current in the R-2R ladder. $\mathrm{R}_{\mathrm{OFs}}$ has the same magnitude as R_{FB} so that the output is offset by a constant $-V_{\text {REF }}$. R1 and R2 (together with external op-amp A1) invert $\mathrm{V}_{\text {REF }}$ and apply it to the 14-bit DAC ($V_{\text {INV }}$). See Table I for complete Offset Binary Code Table.

To eliminate any slight variations in analog ground potential with changing code, there are two analog ground pins. AGNDF sinks all the current flowing through the switches to ground while AGNDS is used as a reference point with minimal current flowing in it. Figure 3 shows A3 maintaining AGNDS at Signal Ground. The connection of AGNDS and AGNDF may be changed depending on required system accuracy and output drive requirements (see Figures 5 and 6).

EQUIVALENT CIRCUIT ANALYSIS

Figure 4 shows an equivalent output circuit for the analog section of the AD7536 D/A converter. The current source I IEAKage is composed of surface and junction leakages. The resistor R0 denotes the equivalent output resistance of the DAC and associated resistors. This varies with input code. Cout is the capacitance due to the current steering switches and varies from about 90 pF to 180 pF (typical values) depending on the digital input. $\mathrm{g}\left(\mathrm{V}_{\mathrm{REF}}, \mathrm{N}\right)$ is the Thevenin equivalent voltage generator due to the reference input voltage, $\mathrm{V}_{\mathrm{REF}}$, and the circuit transfer function, N .

Figure 4. AD7536 Equivalent Analog Output Circuit

CIRCUIT INFORMATION - DIGITAL SECTION
The digital inputs are designed to be both TTL and 5V CMOS compatible. All logic inputs are static protected MOS gates with typical input currents of less than $\ln A$. Internal input protection is achieved by an on-chip distributed diode from DGND to each MOS gate. To minimize power supply currents, it is recommended that the digital input voltages be driven as close as possible to 0 and 5 V logic levels.

Applying the AD7536

Figure 5. AD7536 Operation

BIPOLAR OPERATION

(4-Quadrant Multiplication)

Figure 5 shows the AD7536 connected for bipolar operation. Specified accuracy is attained without the need for expensive closely matched external resistors. R1 and R2 provide an optional gain adjustment and capacitor CI helps prevent overshoot and ringing when high-speed op-amps are used. The -300 mV bias voltage for V_{SS} is derived from R3, R4 and C2. Op-amp A3 (Figure 3 and Figure 6) is omitted from Figure 5. AGNDS and AGNDF are externally shorted to Signal Ground.

Table I shows the Offset Binary Code Table obtained with the circuit of Figure 5. It should be noted that the user can get a 2's Complement transfer function by inverting the MSB of the DAC word.

Binary Number in DAC Register	Analog Output V OUT

OFFSET AND GAIN ADJUSTMENT FOR FIGURE 5.
Offset Adjustment

1. Adjust offset of amplifier A1 so that potential at $\mathrm{R}_{\text {INT }}$ is $<10 \mu \mathrm{~V}$ with respect to Signal Ground.
2. Load DAC register with 10000000000000.
3. Adjust offset of amplifier $A 2$ until $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}(<10 \mu \mathrm{~V})$.

Gain Adjustment

1. Load DAC register with all I's.
2. Trim potentiometer R 2 so that $\mathrm{V}_{\mathrm{O}}=+\mathrm{V}_{\mathrm{IN}} \frac{(8191)}{(8192)}$

For high-temperature applications, resistors and potentiometers should have a low Temperature Coefficient. In many applications, because of the excellent Offset Error, Full Scale Error and Gain T.C. specifications of the AD7536, trimming of the Offset and Gain is not necessary.

AD7536

Figure 6. AD7536 Operation with Forced Ground

GROUNDING CONSIDERATIONS

In the circuits of Figures 5 and 6, with $\mathrm{V}_{\mathrm{REF}}=+10 \mathrm{~V}, 1 \mathrm{LSB}$ has a value of 1.2 mV . So, factors which are not important in less accurate systems must, in this case, be given careful consideration. Among these, the whole question of grounding is crucial Voltage reference ground, the $I_{\text {OUT }}$ pin on the DAC, the noninverting pin of A1 and SIGNAL GROUND must all be at the same potential. Note that in Figure 5, AGNDS and AGNDF are externally shorted and A3 is not used. Voltage drops due to bond wire resistance are not compensated for in this circuit. This means that an extra linearity error of less than 0.1 LSB i added to the DAC linearity error. If the user wishes to eliminate this extra error, then the circuit of Figure 6 should be used.

Here, A3 is used to maintain AGNDS at Signal Ground potential.
$\mathrm{I}_{\text {Out }}$ is also at Signal Ground potential. By using the Force, Sense technique all switch contacts on the DAC are at exactly the same potential and any error due to bond wire resistance is eliminated. If A3 is not a low offset voltage $(<100 \mu \mathrm{~V})$ op-amp it should be trimmed with a potentiometer until the voltage at AGNDS is $<10 \mu \mathrm{~V}$ with respect to SIGNAL GROUND. Figure 7 shows how the circuit of Figure 5 might be be laid out. Gain trim components R1 and R2 have been omitted for clarity. Note how the input to $\mathrm{V}_{\text {REF }}$ (pin 2) is shielded to reduce ac feedthrough while the digital inputs are shielded to minimize digital feedthrough.

Figure 7. Suggested Layout for AD7536 Circuit of Figure 5

Figure 8. Typical Graph of Offset Error vs. Temperature With and Without Low Leakage Configuration

LOW LEAKAGE CONFIGURATION

Leakage current in CMOS D/A converters has two components Current leaks from $V_{D D}$ into the $I_{O U T}$ line and is present at all DAC codes. There is also leakage across the off switches in the DAC. The polarity of this current depends on $V_{\text {INV }}$ and its magnitude is related to the code in the DAC register. At high temperatures (above $90^{\circ} \mathrm{C}$) it is normal for the leakage current to increase dramatically. By its nature it will affect all critical dc parameters (Linearity Error, Gain Error and Offset Error). The AD7536 features a leakage reduction configuration (patent pending) to keep the leakage current low (typically $<10 \mathrm{nA}$) over an extended temperature range. This ensures that the DAC maintains its $25^{\circ} \mathrm{C}$ performance very well at temperatures up to $125^{\circ} \mathrm{C}$.
The AD7536 can be operated with or without the leakage reduction configuration. If V_{SS} (pin 27) is tied to AGND, then the DAC will exhibit normal output leakage current at high temperatures To use the low leakage facility, $\mathrm{V}_{\text {SS }}$ should be tied to -0.3 V as in Figures 5 and 6 . The current taken by $\mathrm{V}_{\text {SS }}$ is very low $(<10 \mu \mathrm{~A})$ allowing a simple resistor divider (R3, R4) to produce the required -300 mV from -15 V . The capacitor C 2 in parallel with R 3 is an integral part of the low leakage configuration and must be $4.7 \mu \mathrm{~F}$ or greater. Figure 8 is a plot of Offset Error versus temperature for both conditions. It clearly shows the improvement when the low leakage configuration is used.

OP-AMP SELECTION

In choosing an amplifier to be used with the AD7536, three parameters are of prime importance. These are

1. Input Offset Voltage (V_{OS})
2. Input Bias Current (I_{B})
3. Offset Voltage Drift ($\mathrm{TC} \mathrm{V}_{\mathrm{OS}}$).

To maintain specified accuracy with $\mathrm{V}_{\text {REF }}$ at $10 \mathrm{~V}, \mathrm{~A} 1$ and A 2 of Figures 5 and 6 must have $V_{O S}<100 \mu \mathrm{~V}$ and $\mathrm{I}_{\mathrm{B}}<10 \mathrm{nA}$. It is important that the amplifier Open Loop Gain, AvoL, be sufficiently large to keep $\mathrm{V}_{\mathrm{OS}}<100 \mu \mathrm{~V}$ for the full output voltage range. For a maximum output of 10 V , A vol must be greater than 100,000 .
In the Forced Ground configuration of Figure 6, one can use an AD OP-07 for amplifier A3, without any external adjustment for $V_{\text {Os }}$. In low frequency or fixed reference applications where fast output settling time is not required, the AD OP-07 is also recommended for A1 and A2. Because of its low Vos no external potentiometers are needed. For faster settling time, one can use the AD544 series of op-amps.
Offset Voltage Drift and Bias Current drift are critical parameters for operation over a wide temperature range. The AD OP-07, AD OP-27 and AD OP-37 all exhibit very low offset drift while the AD544 has very low bias current drift. Table II summarizes the important specifications of the op-amps mentioned above.

Op-Amp	Input Offset Voltage ($V_{\text {os }}$)	Input Bias Current (I_{B})	Offset Voltage Drift(TCVOS)	Settling Time to 0.003\% FS
AD544L	$500 \mu \mathrm{~V}$	25pA	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$5 \mu \mathrm{~s}$
AD OP-07H	$75 \mu \mathrm{~V}$	3nA	$0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$50 \mu \mathrm{styp}$
AD OP-27CH	$100 \mu \mathrm{~V}$	80 nA	$0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$6 \mu \mathrm{styp}$
AD OP-37CH	$100 \mu \mathrm{~V}$	80 nA	$0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$1 \mu \mathrm{styp}$
HA-2620	4 mV	35 nA	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$0.8 \mu \mathrm{styp}$

AD7536

MICROPROCESSOR INTERFACING

AD7536 - 8086A INTERFACE

The versatility of the AD7536 loading sturcture allows interfacing to both 8 - and 16 -bit microprocessor systems. Figure 9 shows the 8086 16-bit processor interfacing to a single device. In this circuit the double buffering feature of the DAC is not used. AD0-AD13 of the 16-bit data bus are connected to the DAC data bus (DB0-DB13). The 14-bit word is written to the DAC in one MOV instruction and the analog output responds immediately. In this example the DAC address is D000. A software routine for Figure 9 is given in Table III. In a multiple DAC system the double buffering of the AD7536 allows the user to simultaneously update all DAC's. In Figure 10, a 14-bit word is loaded to the Input Registers of each of the DACs in sequence.
Then, with one instruction to the appropriate address, CS4
(i.e., LDAC) is brought low, updating all the DACs
simultaneously

Figure 10. AD7536-8086 Interface: Multiple DAC System

ASSUME DS: DACLOAD, CS : DACLOAD
 DACLOAD SEGMENT AT 000

00	8CC9	MOV CX,CS	$:$
02	8ED9	MOV DS,CX	$:$ TO CODE SEGMENT REGISTER
04	BF00D0	MOV DI, \# D000	$:$ LOAD DI WITH D000
07	C705"YZWX"	MOV MEM, \# YZWX"	$:$ DACLOADED WITH WXYZ
$0 B$	EA0000		$:$ CONTROL IS RETURNED TO THE
0 E	00 FF		MONITOR PROGRAM

Table III. Sample Program for Loading AD7536 from 8086

AD7536

AD7536 - MC68000 INTERFACE
Interfacing between the MC68000 and the AD7536 is accomplished using the circuit of Figure 11. The following routine writes data to the DAC input registers and then outputs the data via the DAC register.

Figure 11. AD7536 - MC68000 Interface

AD7536 - Z80 INTERFACE
Though the AD7536 is ideally suited for use either with 16-bit microprocessors or in stand-alone applications, it can also be interfaced to 8 -bit processor systems. Figure 12 is an interface circuit for the popular Z80 microprocessor.

Figure 12. AD7536-Z80 Interface

DIGITAL FEEDTHROUGH

In the preceding interface configurations, most digital inputs to the AD7536 are directly connected to the microprocessor bus Even when the device is not selected, these inputs will be constantly changing. The high frequency logic activity on the bus can feed through the DAC package capacitance to show up as noise on the analog output. To minimize this Digital Feedthrough isolate the DAC from the noise source. Figure 13 shows an interface circuit which physically isolates the DAC from the bus. One may also use other means, such as peripheral interface devices, to reduce the Digital Feedthrough.

-LINEAR CIRCUITRY
OMITED FOR CLARITY

Figure 13. AD7536 Interface Circuit Using Latches to Minimize Digital Feedthrough

AD7536

MECHANICAL INFORMATION

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

28-PIN CERAMIC DIP (SUFFIX D)

