FEATURES

Resolution: 12 Bits
Nonlinearity: $\pm \mathbf{1 / 2 L S B} T_{\text {min }}$ to $T_{\text {max }}$
Low Gain Drift: 2ppm $/{ }^{\circ} \mathrm{C}$ typ, 5ppm $/{ }^{\circ} \mathrm{C}$ max
Microprocessor Compatible
Full 4-Quadrant Multiplication
Fast Interface Timing
Low Power Dissipation: 40mW max
Low Cost
Small Size: $\mathbf{1 6}$-pin DIP and 20-Terminal Surface Mount Package
Latch Free (Protection Schottky Not Required)

GENERAL DESCRIPTION

The AD7542 is a precision 12 -bit CMOS multiplying DAC designed for direct interface to 4 - or 8 -bit microprocessors.
The functional diagram shows the AD7542 to consist of three 4-bit data registers, a 12-bit DAC register, address decoding logic and a 12 -bit CMOS multiplying DAC. Data is loaded into the data registers in three 4 -bit bytes, and subsequently transferred to the 12 -bit DAC register. All data loading or data transfer operations are identical to the WRITE cycle of a static RAM. A clear input allows the DAC register to be easily reset to all zeros when powering up the device.

FUNCTIONAL BLOCK DIAGRAM

The AD7542 is manufactured using an advanced thin-film on monolithic CMOS fabrication process. Multiplying capability, low power dissipation, +5 V operation, small size (16 -pin DIP and 20 terminal surface mount packages) and easy $\mu \mathrm{P}$ interface make the AD7542 ideal for many instrumentation, industrial control and avionics applications.

REV. A
nformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106 , Norwood, MA 02062-9106, U.S.A Tel: $617 / 329-4700$ Telex: 924491 Fax: 617/326-8703

AD7542 - SPEC|F|CATIONS $\left(v_{D 0}=+5 v, v_{\text {REF }}=+10 v, v_{\text {OUT1 }}=v_{\text {OUT2 }}=0 \mathrm{v}\right.$ unless otherwise noted $)$

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

*COMMENTS: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed

ORDERING GUIDE				
	Temperature Range	Relative Accuracy	Gain Error	Package Option
AD7542JN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	$\mathrm{N}-16$
AD7542KN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	$\mathrm{N}-16$
AD7542GKN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 1 \mathrm{LSB}$	$\mathrm{N}-16$
AD7542JP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	$\mathrm{P}-20 \mathrm{~A}$
AD7542KP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	$\mathrm{P}-20 \mathrm{~A}$
AD5542GKP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 1 \mathrm{LSB}$	$\mathrm{P}-20 \mathrm{~A}$
AD7542AQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	$\mathrm{Q}-16$
AD7542BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	$\mathrm{Q}-16$
AD7542GBQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 1 \mathrm{LSB}$	$\mathrm{Q}-16$
AD7542SQ	-55° to $+125^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	$\mathrm{Q}-16$
AD7542TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	$\mathrm{Q}-16$
AD542GTQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 1 \mathrm{LSB}$	$\mathrm{Q}-16$
AD7542SE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	$\mathrm{E}-20 \mathrm{~A}$
AD7542TE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	$\mathrm{E}-20 \mathrm{~A}$
AD7542GTE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 1 \mathrm{LSB}$	$\mathrm{E}-20 \mathrm{~A}$

Figure 1. AD7542 Timing Diagram

PIN CONFIGURATIONS

REV. A

AD7542

TERMINOLOGY

RELATIVE ACCURACY

Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is expressed in \% or ppm of full scale range or (sub) multiples of 1 LSB .

DIFFERENTIAL NONLINEARITY

Differential nonlinearity is the difference between the measured change and the ideal 1LSB change between any two ad jacent codes. A specified differential nonlinearity of ± 1 LSB max over the operating temperature range insures monotonicity GAIN ERROR
Gain is defined as the ratio of the DAC's Full Scale output to its reference input voltage. An ideal AD7542 would exhibit a gain of $-4095 / 4096$. Gain error is adjustable using external trims as shown in Figures 4 and 5.
OUTPUT LEAKAGE CURRENT
Current which appears at OUT1 with the DAC register loaded to all 0s or at OUT2 with the DAC register loaded to all 1 s . MULTIPLYING FEEDTHROUGH ERROR
AC error due to capacitive feedthrough from $V_{\text {REF }}$ terminal to OUT1 with DAC register loaded to all Os.

Table I. Pin Function Description (DIP Pin Numbers)

PIN	MNEMONIC	FUNCTION
1	OUT1	DAC current output bus. Normally terminated at op amp virtual ground
2	OUT2	DAC current output bus. Normally terminated at ground
3	AGND	Analog Ground
4	D3	Data Input (MSB)
5	D2	Data Input
6	D1	Data Input
7	$\overline{\text { D0 }}$	Data Input (LSB)
8	$\overline{\text { CS }}$	Chip Select Input
9	$\overline{\text { WR }}$	WRITE Input
10	A0	Address Bus Input
11	A1	Address Bus Input
12	DGND	Digital Ground
13	$\overline{\text { CLR }}$	Clear Input
14	VDD	+5V Supply Input
15	VREF	Reference Input
16	RFB	DAC Feedback Resistor

Analog Circuit Description

GENERAL CIRCUIT INFORMATION

The AD7542, a 12 -bit multiplying D/A converter, consists of highly stable thin film R-2R ladder and twelve N-channel current switches on a monolithic chip. Most applications require the addition of only an output operational amplifier and a voltage or current reference.

The simplified D/A circuit is shown in Figure 2. An inverted $\mathrm{R}-2 \mathrm{R}$ ladder structure is used-that is, the binarily weighted currents are switched between the OUT1 and OUT2 bus lines, thus maintaining a constant current in each ladder leg independent of the switch state

Figure 2. D/A Simplified Circuit Diagram
One of the current switches is shown in Figure 3. The input resistance at $V_{\text {REF }}$ (Figure 2) is always equal to $R_{\text {LDR }}$ ($R_{\text {LDR }}$ is the $R / 2 R$ ladder characteristic resistance and is equal to value " R "). Since $R_{\mathbb{N}}$ at the $V_{\mathbf{R E F}}$ pin is constant, the refer ence terminal can be driven by a reference voltage or a refer ence current, ac or dc, of positive or negative polarity. (If a current source is used, a low temperature coefficient $R_{F B}$ is recommended to define scale factor.)

Figure 3. N-Channel Current Steering Switch

Applying the AD7542

UNIPOLAR BINARY OPERATION

(2-QUADRANT MULTIPLICATION)
Figure 4 shows the analog circuit connections required for unipolar binary (2 -quadrant multiplication) operation. The logic inputs are omitted for clarity. With a de reference voltage or current (positive or negative polarity) applied at $V_{\text {REF }}$, the circuit is a unipolar D/A converter. With an ac reference voltage or current the circuit provides 2 -quadrant multiplication (digitally controlled attenuation). The input/output relationship is shown in Table II.
R1 provides full scale trim capability [i.e.-load the DAC register to 11111111 1111, adjust R 1 for $\mathrm{V}_{\text {OUT }}=-\mathrm{V}_{\text {REF }}$ (4095/4096)]. Alternatively, Full Scale can be adjusted by omitting R1 and R2 and trimming the reference voltage magnitude.
C1 phase compensation (10 to 33 pF) may be required for stability when using high speed amplifiers. (C1 is used to cancel the pole formed by the DAC internal feedback resistance and output capacitance at OUT1).
Amplifier A1 should be selected or trimmed to provide $\mathrm{V}_{\mathrm{OS}} \leqslant 10 \%$ of the voltage resolution at $\mathrm{V}_{\text {OUT }}$. Additionally, the amplifier should exhibit a bias current which is low over the temperature range of interest (bias current causes output offset at VOUT equal to I_{B} times the DAC feedback resistance, nominally $15 \mathrm{k} \Omega$). The AD 711 K is a high-speed implanted FET-input op amp with low, factory-trimmed Vos.

Figure 4. Unipolar Binary Operation (2-Quadrant Multiplication)

Table II. Unipolar Binary Code Table for Circuit of Figure 4

BINARY NUMBER IN DAC REGISTER	ANALOG OUTPUT, Vout
MSB LSB	
111111111111	$-\mathrm{V}_{\text {REF }}\left(\frac{4095}{4096}\right)$
100000000000	$-V_{\operatorname{REF}}\left(\frac{2048}{4096}\right)=-1 / 2 V_{\mathrm{REF}}$
000000000001	$-\mathrm{V}_{\text {REF }}\left(\frac{1}{4096}\right)$
000000000000	0V

BIPOLAR OPERATION

(4-QUADRANT MULTIPLICATION)
Figure 5 and Table III illustrate the circuitry and code relation ship for bipolar operation. With a dc reference (positive or negative polarity) the circuit provides offset binary operation. With an ac reference, the circuit provides full 4-quadrant multiplication.
With the DAC register loaded to 100000000000 , adjust R1 for $V_{\text {OUT }}=0 \mathrm{~V}$ (alternatively, one can omit R1 and R2 and adjust the ratio of R3 to R4 for $V_{\text {OUT }}=0 \mathrm{~V}$). Full scale trimming can be accomplished by adjusting the amplitude of $\mathrm{V}_{\mathrm{REF}}$ or by varying the value of R 5 .
As in unipolar operation, A1 must be chosen for low $V_{O S}$ and low $I_{B} . R 3, R 4$ and R 5 must be selected for matching and tracking. Mismatch of R3 to R4 causes both offset and Ful Scale error. Mismatch of R5 to R4 or R3 causes Full Scale error. C1 phase compensation (10 pF to 25 pF) may be required for stability.

Figure 5. Bipolar Operation (4-Quadrant Multiplication)

Table III. Bipolar Code Table for Offset Binary Circuit of Figure 5

BINARY NUMBER IN DAC REGISTER	ANALOG OUTPUT, Vout
MSB LSB	
111111111111	$+\mathrm{V}_{\text {REF }}\left(\frac{2047}{2048}\right)$
100000000001	$+V_{\operatorname{REF}}\left(\frac{1}{2048}\right)$
100000000000	OV
011111111111	$-V_{\text {REF }}\left(\frac{1}{2048}\right)$
000000000000	$-\mathrm{V}_{\text {REF }}\left(\frac{2048}{2048}\right)$

AD7542

INTERFACE LOGIC

INTERFACE LOGIC INFORMATION

The AD7542 is designed to interface as a memory-mapped output device.
A typical system configuration is shown in Figure 6. $\overline{\mathrm{CS}}$ is the decoded device address, and is derived by decoding the three higher order address bits. A0 and A1 is the AD7542 operation address, and is decoded internally in the AD7542 to point to the desired loading operation (i.e., load high byte, middle byte, low byte or DAC register). Table IV shows the AD7542 truth table.

All data loading operations are identical to the write cycle of a RAM as shown in Figure 1

Additionally, the $\overline{\mathrm{CLR}}$ input allows the AD7542 DAC register to be cleared asynchronously to 000000000000 . When oper ating the AD7542 in a unipolar mode (Figure 4), a CLEAR causes the DAC output to assume 0 V . In the bipolar mode (Figure 5), a CLEAR causes the DAC output to go to - $\mathrm{V}_{\text {REF }}$.
In summary:

1. The AD7542 DAC register can be asynchronously cleared with the $\overline{\mathrm{CLR}}$ input.
2. Each AD7542 requires 4 locations in memory.
3. Performing any of the four basic loading operations (i.e. load low byte data register, middle byte data register, high byte data register or 12 -bit DAC register) is accomplished by executing a memory WRITE operation to the appli cable address location for the required DAC operation.

Table IV. AD7542 Truth Table

AD7 542 INTERFACE TO MC6800

A typical 6800 system configuration is shown in Figure 6. Since the AD7542 contains four registers each AD7542 is assigned four locations in memory. A0 and A1 provides the operational addresses and are decoded internally to point to the desired register. Register loading is accomplished by executing a memory WRITE instruction to one of the four addresses Table V gives a sample loading subroutine written in re-entrant form.
Choosing an arbitrary start address of PPQQ, locations PPQQ PPQQ +1 and $\mathrm{PPQQ}+2$ select the low, middle and high byte registers respectively while address $\operatorname{PPQQ}+3$ selects the 12 -bit DAC register. The 12 -bit data to be passed to the subroutine is stored in locations XXYY and XXYY+1. The four most significant data bits are assumed to occupy the lower half of $\mathbf{X X Y Y}+1$

Figure 6. Interfacing the AD7542 to an MC6800 Microprocessor

Table V. Sample Routine for AD7542-6800 Interface

	JSR	wwzz	
wwzz	PSH A		PUSH ACC. A ONTO STACK
	TPA		
	PSH A		PUSH CCR ONTO STACK
	LDA A	XXYY	
	STA A	PPQQ	LOAD LOW BYTE
	ROR A		
	STA A	PPQQ + 1	LOAD MIDDLE BYTE
	LDA A	XXYY+1	
	STA A	PPQQ +2	LOAD HIGH BYTE
	StA A	PPQQ +3	LOAD DAC REGISTER
	PULA		
	TAP		POP CCR FROM STACK
	PULA		POP ACC. A FROM STACK
	RTS		RETURN TO MAIN PROGRAM

AD7542 INTERFACE TO 8085

A typical 8085 system configuration is shown in Figure 7. The AD7542 $\overline{\mathrm{CS}}$ input is decoded from the three high order address lines A13-A15. The $8085 \overline{W R}$ output is directly connected to the WR input of the AD7542. Table VI gives a sample loading subroutine written in re-entrant form. The 12 -bit data to be passed to the subroutine is stored in locations XXYY and $\mathrm{XXYY}+1$. The four most significant data bits are assumed to occupy the lower half of XXYY+1. As before, arbitrary addresses PPQQ to PPQQ+3 select the low byte, middle byte, high byte and DAC registers respectively.

Figure 7. Interfacing the AD7542 to an 8085 Microprocessor
Table VI. Sample Routine for AD7542-8085 Interface

	CALL	7542	
7542	PUSH	PSW	PUSH REGISTER CONTENTS
	PUSH	B	ONTO STACK
	PUSH	H	
	LXI	H, XXYY	
	MOV	A, M	
	STA	PPQQ	LOAD LOW BYTE
	MVI	B, 04	
	RAR		
	DCR	B	
	JNZ	LOOP	
	STA	PPQQ +1	LOAD MIDDLE BYTE
	INX	H	
	MOV	A, M	
	STA	PPQQ +2	LOAD HIGH BYTE
	STA	PPQQ +3	LOAD DAC REGISTER
	POP	H	POP REGISER CONTENTS
	POP	B	FROM STACK
	POP	PSW	
	RET		RETURN TO MAIN PROGRAM

APPLICATION HINTS

The AD7542 is a precision 12-bit multiplying DAC designed for system interface. To ensure system performance consistent with AD7542 specifications, careful attention must be given to the following points:

1. GENERAL GROUND MANAGEMENT: Voltage differences between the AD7542 AGND and DGND cause loss of accuracy (dc voltage difference between the grounds intro duces gain error. AC or transient voltages between the grounds cause noise injection into the analog output). The simplest method of ensuring that voltages at AGND and DGND are equal is to tie AGND and DGND together at the AD7542. In more complex systems where the AGND DGND intertie is on the back-plane, it is recommended that diodes be connected back-to-back between the AD7542 AGND and DGND pins (1N914 or equivalent).
2. OUTPUT AMPLIFIER OFFSET: CMOS DACs exhibit a code-dependent output resistance which in turn causes a code-dependent amplifier noise gain. The effect is a nonlinearity term at the amplifier output which depends on V_{OS} (V_{OS} is amplifier input offset voltage). This nonlinearity term adds to the $\mathrm{R} / 2 \mathrm{R}$ nonlinearity. To maintain specified operation, it is recommended that amplifier $\mathrm{V}_{\text {OS }}$ be no greater than 10% of the DAC's output resolution over the temperature range of interest [output resolution $=$ $\mathrm{V}_{\text {REF }}\left(2^{-\mathrm{n}}\right.$) where n is the number of bits exercised].
3. HIGH FREQUENCY CONSIDERATIONS: AD7542 output capacitance works in conjunction with the amplifier feedback resistance to add a pole to the open loop response. This not only reduces closed loop bandwidth, but can also cause ringing or oscillation if the spurious pole frequency is less than the amplifier's 0 dB crossover frequency. Stability can be restored by adding a phase compensation capacitor in parallel with the feedback resistor.
4. GAIN TEMPERATURE COEFFICIENTS: The gain temper ature coefficient of the AD7542 has a maximum value of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and a typical value of $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. This corresponds to gain shifts of 2.0 LSBs and 0.82 LSBs respectively over a $100^{\circ} \mathrm{C}$ temperature range. When trim resistors are used to adjust full-scale range as shown in Figures 4 and 5 the temperature coefficient of R1 and R2 should be taken into account. It may be shown that the additional gain temperature coefficients introduced by R1 and R2 may be approximately expressed as follows: -
$\begin{aligned} & \text { Temperature Coefficient } \\ & \text { contribution due to } \mathrm{R} 1\end{aligned}=-\frac{\mathrm{R}_{1}}{\mathrm{R}_{\mathrm{IN}}}\left(\gamma_{1}+300\right)$
$\begin{aligned} & \text { Temperature Coefficient } \\ & \text { contribution due to } \mathrm{R} 2\end{aligned}=+\frac{\mathrm{R}_{2}}{\mathrm{R}_{\mathbf{I N}}}\left(\gamma_{2}+300\right)$
Where γ_{1} and γ_{2} are the temperature coefficients in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of R 1 and R 2 respectively and R_{IN} is the DAC input resistance at the $\mathrm{V}_{\text {REF }}$ terminal (pin 2). For high quality wirewound resistors and trimming potentiometers γ is of the order of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. It will be seen that if R 1 and R 2 are small compared with $R_{I N}$, their contribution to gain temperature coef ficient will also be small. For the standard AD7542 gain error specification of $\pm 3 \mathrm{LSBs}$ it is recommended that R1 $=50 \Omega$ and $\mathrm{R} 2=25 \Omega$. With $\gamma=50$ these values result in an overall maximum gain error temperature coefficient of:

$$
5+\frac{0.025}{8}(50+300)=6 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
$$

However, if the AD7542GTD is used which has a specified gain error of $\pm 1 \mathrm{LSB}$, then with $\mathrm{R} 1=10 \Omega$ and $\mathrm{R} 2=5 \Omega$ the overall maximum gain temperature coefficient is increased by only $0.25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Where possible R 1 should be a select on test fixed resistor since the resulting gain temperature coeffi cient will be tighter in all cases. For further gain T.C. information refer to application note, "Gain Error and Gain Temperature Coefficients of CMOS Multiplying DACs', Publication Number E630-10-6/81 available from Analog Devices.
5. For additional information on multiplying DACs refer to "CMOS DAC Application Guide," Publication Number G872a-15-4/86, available from Analog Devices.

MECHANICAL INFORMATION

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

