LC 2 MOS 8-Bit μ P Compatible 12-Bit DAC
 AD7548

FEATURES

2-Bit Bus Compatible 12-Bit DAC
All Grades 12-Bht Monotonic Over Full Temperature Ranget
Operation Specified at $+5 \mathrm{~V},+12 \mathrm{~V}$
or +15 V Power Supply
Low Gain Drift of 5ppm ${ }^{\circ} \mathrm{C}$ Maximum
Full 4 Ousdrant Multiplication
Skinny DIP and Surface Mount Packages

APPLICATIONS

8-Bit Microprocessor Baced Control Systems
Programmable Amplifiers
Function Goneration
Servo Control

GENERAL DESCRIPTION

The AD7548 is a 12-bit monolithic CMOS D/A converter for use with 8-bit bus microprocessors. Data is loaded in two bytes to input holding registers as shown in the block diagram opposite. The AD7548 can be configured to accepr either left- or right-justified data, least significant byte or most significant byte first, using standard TTL compatible control inputs.
A separate load DAC control input allows the user the choice of updating the analog output coincident with loading new data to the DAC input register or at any time after the data loading event. This feature is especially important in multi-DAC systems where simultaneous update of all DACs is required.
The neor Linear Compatible CMOS (LC ${ }^{2}$ MOS) process used in the manufacture of the AD7548 allows precision thin-film linear circuitry and high-speed low-power CMOS logic to be integrated on the same small chip. The high-speed logic allows direct interfacing to most of the popular 8 -bit mictoprocessors.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. Microprocessor Compatibility

High speed input control (TTL/5V CMOS compatible) allow direct interfacing to mos' of the popular 8 -bit microprocessors.
2. Guaranteed Monotonicity

The AD7548 is guaranteed monotonic to 12 -bits over the full temperature range for all grades and at all specified supply voltages.
3. Selectable Dara Input Format

Left- or right-justified data, least significant or most significant byte first. This allows the AD7548 to be interfaced with microprocessors using either Motorola or Intel-typc data formating
4. Monolithic Construction

For increased relizbility and reduced package size - $0.3^{\prime \prime}$
20-pin DIP and 20 -terminal surface mount packages.
5. Single Supply Operation - See Figure 8.
6. Low Gain Error and Gain Error T.C

REV. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devicos for its use, nor for any infringements of patents or other rights of third paries
which may resunt from its use. No license is granted by implication or otherwise under any patent of patent rights of Analog Devices.

Prameter	J, A Verioions	$\begin{aligned} & \mathbf{X}, \mathbf{B} \\ & \text { Veriones } \end{aligned}$	S Vemion	TVersion	Uaits	Test Condioion/Comments
ACCURACY						
Remolution	12	12	12	12	Bits	
Relative Accuracy	± 1	$=1 / 2$	± 1	$=1 / 2$	LSB max	
Differential Nonlinearity	± 1	$=1 / 2$	± 1	$\pm 1 / 2$	LSB max	Allgrades guaranted monoronic to 12-biss
						over temperature.
Full Soake Error	± 6	± 3	± 6	± 3	LSB max	Mensured using internal $R_{\text {fr }}$ and includes effects arlenkage current and gaio TC. Full Scale Error can be trimmed to zero.
G min Tempararure Coefficientr${ }^{2}$; AGuin/STemperaure	± 5	± 5	± 5	± 5	$\mathrm{ppm}^{\circ} \mathrm{C}$ max	Typicalvaluc is 2ppra ${ }^{\circ} \mathrm{C}$
Output Lemkage Current						
	$\begin{gathered} \pm 5 \\ +25 \end{gathered}$	$\begin{gathered} \pm 5 \\ -25 \end{gathered}$	$\begin{aligned} & \pm 9 \\ & =150 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 150 \\ & \hline \end{aligned}$	$\begin{aligned} & n A \max \\ & n A \max \end{aligned}$	All digizal inputs $=0 \mathrm{~V}$
REFERENCEINPUT Lnpuı Recistance, Pia 19	$\begin{aligned} & 7 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 20 \\ & \hline \end{aligned}$	$k \Omega$ min $k \cap$ max	Typical Input Resistance $=11 \mathrm{k} \Omega$
DIGITALINPUTS						
$V_{\text {tu }}$ (Input High Voluee)	2.4	2.4	2.4	2.4	$V_{\text {min }}$	
$V_{\text {IL }}$ (Inpuu Low Voluage)	0.8	0.8	0.8 .	0.8	$V_{\text {max }}$	
$\mathrm{I}_{\text {d }}$ (Input Curreat)						
$+25^{\circ} \mathrm{C}$	± 1	± 1	± 1	± 1	${ }_{4} A_{\text {max }}$	$\mathrm{V}_{\mathrm{N}}=0 \mathrm{~V}$ or V_{DD}
$T_{\min } 10 T_{\operatorname{man}}$	± 10	± 10	± 10	± 10	${ }_{\mu}^{\mu} \mathrm{F}_{\text {max }}$	
$\mathrm{C}_{\text {PV }}$ (Inpur Capaciance)	7	7	7	7	pF max	
POWER SUPPLY						
$V_{D D}$ Renge						
IDD	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	mA max mantax	All digical inputs $V_{\text {IL }}$ or $V_{\text {IH }}$ All digisal inputs $0 V_{\text {or }} V_{D D}$			
notes ${ }^{2}$ Gourasuced by dewign but nor producrion sesed.						
Spaifuxions subixat						

Parameter	Limitat $T_{A}=25^{\circ} \mathrm{C}$	$\begin{aligned} & L \text { Limit }^{2} \mathrm{at} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & L_{i m i t}{ }^{2} \mathrm{at} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & t 0+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Units	Test Condition/Comments
$t_{\text {ds }}$	240	240	290	ns min	Data Valid Setup Time
$t_{\text {dH }}$	50	50	70	$n \mathrm{nmin}$	Data Valid Hold Time
${ }^{\text {cms }}$	30	40	50	ns min	CSMSB or CSLSB to WR Serup Time
${ }^{\text {c }}$ WH	15	20	25	$n s$ min	CSMSB or CSLSB to WR Hold Time
ims	30	40	50	ns min	$\overline{\text { LDAC }}$ to WR Setup Time
${ }_{\text {L Wh }}$	15	20	25	ns min	LDAC to WR Hold Time
t_{WR}	250	280	320	ns min	Write Pulse Width

Parameter	Limitat $T_{A}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Limit }^{2} \mathrm{at} \\ & \mathrm{~T}_{\mathrm{A}}=-400^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	Limit 2 at $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Usits	Test Conditions/Comments
$t_{\text {ds }}$	160	190	230	ns min	Dasa Valid Serup Time
${ }_{\text {t }}^{\text {d }}$	30	30	50	ns min	Data Valid Hold Time
tovs	30	40	50	ns min	CSMSB or CSLSE to WR Setup Time
tcme	15	20	25	ns min	CSMSE or CSLSB to WR Hold Time
tims	30	40	50	$n s$ min	LDAC to WR Serup Time
$\mathrm{f}_{\mathrm{LWH}}$	15	20	25	ns min	$\overline{\text { LDAC }}$ o $\overline{V R}$ Hold Time
twR	170	200	240	ns min	Write Pulse Width

AC PERFDRMAMEF CHARAGTERISTIGS These characteristics are inchuded tor Design Guidance only and are not subject to best

Prameter Verios	$\mathrm{V}_{\mathrm{DD}}=45 \mathrm{~V}$		$V_{\text {DD }}=+12 V_{10}+15 \mathrm{~V}$		Units	Ter Comditionu/Comments
	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {max }}, \mathrm{T}_{\text {max }}$	$\mathrm{T}_{\mathrm{A}}=+2 \mathrm{Sc}^{\mathrm{c}} \mathrm{C}$	$T_{A}=T_{\text {max }}, T_{\text {max }}$		
Ouppul Curreas Section Time	1.5	-	1	-	ustyp	ToD. 01% of full scale nnge. Lourt loed = 100n, $\mathrm{C}_{\text {ExT }}-13 \mathrm{pF}$. DACregister alternately londed with ell ls and illos
Digival to Analog Glitch lmpule	400	-	330	-	$n \vee-\sec$ typ	Measured with $V_{\text {Ref }}=0 V$, $\mathrm{I}_{\text {OUT }}$ load $=100 \mathrm{n}, \mathrm{C}_{\mathrm{EXT}}=13 \mathrm{pF}$. DAC register alternately louded with ell is and allos
Multiplying Feedhrough Error ${ }^{3}$	3	5	3	5	mV p-ptyp	$V_{\text {REF }}= \pm S V, 10 k H z$ sine wave DAC register loaded with allos.
Total Harmoaic Distortion	-85	-	-85	-	dB typ	$\mathrm{V}_{\mathrm{REF}}=6 \mathrm{~V}$ rms @ 1 kHz . DAC register loaded with all is.
Power Supply Rejection $\triangle G A I N / \Delta V_{D D}$	± 0.015	± 0.03	± 0.01	± 0.02	\% per \% max	$\Delta V_{D D}= \pm 5 \%$
Output Cupwitunce $\mathbf{I}_{\text {cort }}$ (Pin 1)	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} 200 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 200 \\ 100 \\ \hline \end{array}$	PF $\max ^{2}$ $\mathrm{pF} \max$	DAC register handed with all $1 s$. DAC register loaded with allos.
Output Noise Voluge Density $(10 \mathrm{~Hz}-100 \mathrm{KHz})$	15	-	15	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ typ	Measured herween $\mathrm{R}_{\text {rb }}$ and $\mathrm{l}_{\text {Out }}$

notes

AD7548

ABSOLUTE MAXIMUMRATINGS*

(TA $=+25^{\circ} \mathrm{C}$ undess otherwise noted)

V ${ }_{\text {DD }}$ (pin 18) to DGND +17 V	
$\mathbf{V}_{\text {REF }}(\mathbf{p i n} 19)$ to AGND $\pm 25 \mathrm{~V}$	
$\mathbf{V}_{\text {RFB }}(\mathbf{p i n} 20)$ to AGND	
Digital Input Voltage	
$V_{\text {PIN }}$, to DGND $-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3$	
AGND to DGND -0.3V, V $\mathrm{V}_{\mathrm{DD}}+0$.	
Power Dissipation (Any Package)	
To $+75^{\circ} \mathrm{C}$	450 mW
Derates above $+75^{\circ} \mathrm{C}$	$6 \mathrm{~mW} / \mathrm{c}$

Operaing Temperature Range
Commercial (J, K versions) -40 to $+85^{\circ} \mathrm{C}$ Commercial (J, K versions) -40 to $+85^{\circ} \mathrm{C}$ Industrial (A, B versions) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Extended (S, T versions) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 secs) $+300^{\circ} \mathrm{C}$

Stresses above those listed undea "Absolute Maximum Ratings" may caute permanent damage to the device. This is a stress rating only and functiona operation of the device at these or any other conditions above chose indicated in the operational sections of this specification is not implied. Exposure to ebsolute maximum rating condirions for excended periods may affert device reliability.

CAUTION
ESD (cectrostatic discharge) sensitive device. The digital control inputs are diade protected; however, permanent damage may occur on unconnected devices subject so high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

pinconfigurations

ORDERING GUIDE ${ }^{1}$

Model ${ }^{2}$	Temperature Range	Relative Accuracy	Full-Scale Error	Package Option ${ }^{3}$
AD7548JN	$-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	\pm ILSB	$\pm 6 \mathrm{LSB}$	N-20
AD7548KN	$-40^{\circ} \mathrm{C} 0+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	± 3 LSB	N. 20
AD7548JP	$-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 6 \mathrm{LSB}$	P-20A
AD7548KP	$-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	P-20A
AD7548JR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 6 \mathrm{LSB}$	R-20
AD7548KR	$-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	$\pm 1 / 2 L . S B$	± 31. SB	R-20
AD7548AQ	$-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	± 1 LSB	$\pm 6 \mathrm{LSB}$	Q-20
AD7548BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 L S B$	± 3 LSB	Q-20
AD7548SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 6 \mathrm{LSB}$	Q-20
AD7548TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	Q-20
AD7548SE	$-55^{\circ} \mathrm{Cto}+125^{\circ} \mathrm{C}$	$\pm 11.5 B$	$\pm 6 \mathrm{LSB}$	E-20A
AD7548TE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{I}$.SB	$\pm 3 \mathrm{LSB}$	E-20A

NOTE

Analog Devices rescrves the right to ship ceramic (package outline D-20) packages
in lieu of cerdip (package outline Q-20) packages.
'To order MIL-STD-883, Class B processed parts, add/8838 to part number.
Contact your local salet office for military data sheet.
E - leadless Cerumic Chip Carrier; \mathbf{N} - Plastic DIP; P w Plastic Lended Chip Carricr; Q - Cerdip; R - soll.

CONTROL INPUT INFORMATION
Figure la shows the data load timing diagram for the AD7548. Figure ib shows the simplified input control structure of the AD7548.

Figure 1b. Simplified AD7546 Input Control Structure

REV. A

AD7548

general circuit information

The simplified DiA circuir is shown in Figure 2. An inverted R-2R ladder structure is used, which steers binarily weighted currents between I Iout and AGND, thus maintaining a constant current in each ladder leg independent of the switch state.
The input resistance at $V_{\text {Rre }}$ is constant and equal to the value " R " in Figure 2. Since the input resistance is constant, the reference terminal can be driven by a reference volage or a reference current, ac or dc, of positive or negative polarity. (If a current source is used, a low temperature coefficient external K_{FB} is recommended to detine scale factor)

Figure 2. AD7548 Simplified Functional Diagram

EQUIVALENT CIRCUIT ANALYSIS

Figure 3 shows an equivalent circuit for the analog section of the AD7548 D/A converter. The current source $\mathrm{I}_{\text {IViAKAGe }}$ is composed of surface and junction leakages. The resistor R_{0} denotes the equivalent output resistance of the DAC which varies with input code (excluding all O's code) from 0.8 R to 2 R , where R is lypically llksl. Gour is the capacitance due to the current stecring switches and varies from about 50 pF to 120 pF (typical values) depending upon the digital input. $8\left(\mathrm{~V}_{\mathrm{Rm}} \mathrm{s}, \mathrm{N}\right)$ is the Thevenin equivalent volage generator due to the reference input voltage, $\mathrm{V}_{\text {Risis }}$, and the transfer function of $\mathrm{R}-2 \mathrm{R}$ ladder, N .

For further information on CMOS multiplying D/A converters refer in "Application Guide to CMOS Multiplying D/A Converers" available from Analog Devices, Publication Number G479-15-8/78.

Figure 3. AD7548 Equivalent Analog Outpur Circuit

DATA LOADING

The AD7548 accepts incoming data in either left-justified format or right-justified format depending on the control impurs $D F / \overline{D O R}$ and CTRL.
(See pin description of DF// $\overline{D O R}$ and CTRL on preceding page)
Two operating modes are possible for controlling the transfer of data from the input register to the DAC register, the automatic transfer mode and the strobed transfer mode.

AUTOMATIC TRANSFER MODE

This is the simplest and fastest method of transferring data to the DAC register. It is facilitated by connecting LDAC to eithe $\overline{C S M S B}$, as shown in Figure 10, or CSLSB.
Figure 4 shows the ciming diagram for automatic transfer of 8
+4-bil data to the DAC register. The first write cycle loads the first byte of data to the imput register. The second write cycle loads the second byte of data to the input register and automatically uransfers both bytes to the DAC register.

Updating a single byte (High or Low) in the DAC register can be achicved in one write cycle using the automatic transfer mode.

Figure 4. Automatic Transfer Mode

STROBED TRANSFER MODE

Figure 5 shows the timing diagram for the strobed transfer of 8 +4 -bit data to the DAC register. Three write cycles are required for this transfer mode. The first two write cycles sequentially load bytes 1 and 2 into the input register. The third write cycle transfers data from the input register to the DAC register.
The strobed transfer mode allows the DAC registers of several AD7548's to be updated simultaneously, as shown in Figure 13, by means of a masier strobe signal connected to the LDAC of each device.
A single byte of data (High or Low) can be transferred to the DAC register in two write cycles using the strobed transfer mode.

Figure 5. Strobed Transfer Mode

DATA OVERRIDE

The contents of the DAC register can be overridden by pulling DF/DOR (pin 5) LOW. The CTRL (pin 6) input then determines whether the DAC register data is overidden by all Ds (CTRL IOW) or all Is (CTRL HIGH). This feature allows the uscr to calibrate the AD7548 in circuits such as Figure 6 without calling on the microprocessor to load calibration data.

Applying the AD7548

UNIPOLAR BINARY OPERATION

(2-QUADRANT MULTIPLICATION)
Figure 6 shows the analog circuit connections required for unipolar binary operation. With a de input voltage or current (positive or negative polarity) applied at pin 19, the circuit is a unipolar D/A converter. With an ac input volage the circuit provides 2 quadrant muluiplication (digially controlled attenuation)
Table I shows the code relationship for the circuit of Figure 6.
For full scale trimming the DAC register is loaded with 1111 1111 1111. This is most easily accomplished by using the data override function. R1 is then adjusted for $\mathrm{V}_{\mathrm{OuT}}=-\mathrm{V}_{\mathrm{IN}}(4095 /$ 4096). Alternatively full scale can be adjusted by omiting R1 and R2 and trimming the reference voltage magnitude.
Capacitor Cl provides phase compensation and helps prevent overshoot and ringing when using high speed op amps.

Figure 6. Unipolar Binary Operation

Table 1. Unipolar Binary Code Table for Circuit of Figure 6

Binary Number in DAC Register			Analog Output, $V_{\text {out }}$
MSB		LSB	
1111	1111	1111	$-\mathrm{V}_{\text {IN }}\left(\frac{4095}{4096}\right)$
1000	0000	0000	$-V_{\text {IN }}\left(\frac{2048}{4096}\right)=-1 / 2 V_{\text {IN }}$
0000	0000	0001	$-\mathrm{V}_{\text {IN }}\left(\frac{1}{4098}\right)$
0000	0000	0000	OV

BIPOLAR OPERATION

(4.QUADRANT MULTIPLICATION

Figure 7 and Table II illustrate the recommended circuit and code relationship for bipolar operation. The circuit uses offse binary input coding. However, 2's complement coding can be accommodated if the MSB is inverted (done in software) before data is loaded into the DAC.
With the DAC register loaded to 100000000000 , adjust R1 for $\mathrm{V}_{\text {OUT }}-\mathrm{OV}$ (alternatively one can omit R1 and R2 and adjust the ratio of R3 and R4 for $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$). Full scale trimming can be accomplished by adjusting the amplitude of $V_{\text {IN }}$ or by varying the value of R5.
R3, R4 and R5 must be selected to match within 0.01\% and they should be the same type of resistor (preferably metal film) so that their temperature coefficients match. Mismatch of R3 to R4 causes both offset and full scale error. Mismatch of R5 to R4 and R3 causes full scalc error

Figure 7. Bipolar Oparation (Offset Binary Coding)

Table II. Bipolar Code Table for Offset Binary Circuit of figure 7

Binary Number in DAC Register			Anajog Output, $\mathrm{V}_{\text {out }}$
MSB		LSB	
1111	1111	1111	$+V_{1 N}\left(\frac{2047}{2048}\right)$
1000	0000	0001	$+V_{\text {IN }}\left(\frac{1}{2048}\right)$
1000	0000	0000	0V
0111	1111	1111	$-V_{\text {IN }}\left(\frac{1}{2048}\right)$
0000	0000	0000	$-\mathrm{V}_{\mathbf{I N}}\left(\frac{2048}{2048}\right)$

AD7548

SINGLE SUPPLY OPERATION
Figure 8 shows the AD7548 connected in a voltage switching mode. The input volage is connected to $I_{o u r}$. The D / A converter output voluge is taken from the $V_{\text {REF }}$ pin and has a constan impedance equal to R. $\mathbf{R}_{\text {FR }}$ is not used in this circuit. The inpu voltage $V_{I N}$ must always be positive with respect to AGND in order to prevent an internal diode from turning on. To maintain linearity the input voltage should remain within 2.5 V of AGND with $V_{D D}$ from +12 V io +15 V .
The output voltage $V_{\text {Out }}$ of Figure 8 is cxpressed as

$$
V_{\text {OUT }}=\left(V_{\text {IN }}\right)(D)\left(\frac{R_{1}+R_{2}}{R_{1}}\right)
$$

Where D is a fractional representation of the digital input word ($0 \leq \mathrm{D} \leq 4095 / 40 \%$).

Figure 8. Single Supply Operation Using Vohtage Switching Mode

APPLICATION HINTS

Output Offset: CMOS D/A converters in circuirs such as Figures 6 and 7 exhibit a code dependent output resistance which in turn cause a code dependent amplifier noise gain. The effect is a code dependent differential nonlinearity term at the amplifier output which, depends on $V_{O S}$ where $V_{O S}$ is the amplifier input offset voltage. To maintain monotonic operation it is recommended that $V_{\text {OS }}$ be no greater than (25×10^{-6}) $V_{\text {REF }}$) over the temperature range of operation. Suitable op amps are ADS17L and AD544L. The ADSITL is best suited for fixed reference applications with low bendwidth requirements: it has extremely low offser ($50 \mu \mathrm{~V}$) and in most applications will not requirc an offset trim. The AD544L has a much wider bandwidth and higher slew rate and is recommended for multiplying and other applications requiring fast senling. An offset trim on the ADS44L may be necessary in some circuits.

General Ground Management: AC or transient voltages between AGND and DGND can cause noisc injection into the analog output. The simplest method of ensuring that voliages at AGND and DGND are equal is to tie AGND and DGND together at
the AD7548. In more complex systems where the AGND and DGND intertic is on the backplanc, it is recommended that two diodes be connected in inverse parallel between the AD7548 AGND and DGND pins (1N914 or equivalen)
Temperarure Coefficients: The gain temperature coefficient of the AD7548 has a maximum value of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and typical value of $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. This corresponds to worst case gain shifts of 2 LSB and $0.8 L S B s$ respectively over a $100^{\circ} \mathrm{C}$ temperature range. When irim resistors R1 and R2 are used to adjust full scale range, the temperature coefficient of R1 and R2 should also be taken into account. The reader is referred to Analog Devices Application Note "Gain Error and Gain Temperature Coefficient of CMOS Multiplying DACs", Publication Number E630-10-6/81.
High Frequency Considerations: AD7548 ourput capacitance works in conjunction with the amplifier feedback resistance to add a pole to the open loop response. This can cause ringing or oscillation. Stability can be restored by adding a phase compensation capacitor in parallel with the feedback resistor.
Feedthrough: The dynamic performance of the AD7548 will depend upon the gain and phase stability of the output amplifier, together with the optimum choice of PC board layout and decoupling components. A suggested printed circuit layout for Figure 6 is shown in Figure 9 which minimizes feedthrough from $V_{\text {REP }}$ to the output in multiplying applications.

Figure 9. Suggested Lavout for AD7548 and Op Amp

For additional information on muluplying DACs refer to "Application Guide to CMOS Multiplying D/A Converters", Publi cation Number G479-15-8/78, available from Analog Devices.

AD7548

MICROPROCESSOR INTERFACING

AD7548 - MC6500 INTERFACE

A typical 6800 contiguration using the automatic transfer mode of the AD7548 is shown in Figure 10. Table III gives a sample loading routine writren in re-entrant form. Data load and store instructions use extended addressing. The 12 -bit data to be passed to the subroutine is stored in locations XXYY and XXYY +1 . The data is considered right-iustified with the four most significant bits occupying the lower half of XXYY +1 . The AD7548 is assizned a base address of PPQQ. This address selects the low byte register of the AD7548. Address PPQQ + 1 selecis both the high byte register and the LDAC control input.

Figure 10. AD7548-MC6800 Interface (Automatic Transfer Mode)

Table III. Sample Routine for A07548-MC6800 Interface

AD7548-8085A INTERFACE
Figure 11 shows a typical AD7548 to 8085A microprocesso interface configured for automatic transfer of $8+4$-bit right-jusuified data. Table IV gives a sample loading routine written in re-entrant form. The 12 -bit data to be passed to the subrouting is stored in locations $X X Y Y$ and $X X Y Y+1$. The four most significant data bits occupy the lower half of $X X Y Y+1$. As before, addresses PPQQ and $\mathrm{PPQQ}+1$ select the $\overline{C S L S B}$ and CSMSB/LDAC control inputs respectively. Since only two instructions (LHLD, SHLD) are required to both fetch and load the 12 -bit data word to the AD7548, it may be more efficient to insert these instructions as required in the main program rather than use a subroutine such as illustrated here.

Figure 11. A07548-8085A interface (Autamatic Transfer Mode)

Table IV. Sample Routine for AD7548-8085A Interface

	CALL	7548	
7548	PUSH	PSW	Push register contents onto stack
	PUSH	H	
	LHLD	XXYY	Fetch 12-bit data
	SHLD	PPQQ	L.oad 12-bit data
	POP	H	Pop register contents from stack
	POP	PSW	
	RET		Return to main program

AD7548

D7548 - MC6809 INTERFACE

The AD7548 can be interfaced to the MC6809 microprocessor as shown in Figure 12 for automatic transfer of $8+4$-bit date
Similar to the 8085A instructions LHLD and SHLD, the 6809
has two instructions to fetch and store 12 -bit (16-bit) data to the AD7548, LDD and STD. However, in the 6809, the high byte of data is moved first, then the low byte (this is the opposite of the 8085A). This means that if the 12 -bit data is assumed to reside at addresses $\mathbf{X X Y Y}$ and $\mathbf{X X Y Y}+1$ then $X X Y Y$ must contain the high byte. It also means that the address decoding logic of Figure 11 must be slightly changed so that the even-order

AD7548 address, PPQQ from before, selects the CSMSB input o load the high byte first. In this automatic transfer configuration $\overline{\text { LDAC }}$ is tied to the $\overline{\text { CSLSB }}$ input. The AD7548 analog output can thus be updated using only two instructions as follows:
LDD \quad SXXYY

STD $\quad \$ \mathrm{PPQQ}$
The strobed transfer configuration is shown in Figure 13 with a dedicated decoder output assigned to each chip select input. The curnmon LDAC signal allows simultaneous update of both AD7548 DAC registers.

Figure 12. AD7548 - MC6809 Interface (Autornatic Transfer Mode)

Figure 13. AD7548-MC6809 interface IStrobed Transfer Mode)

Teble V. Program Listing for Figure 15

ADDRESS	OP-CODE	MNEMONIC	OPERAND
0000	A0	LDY	$* 00$
01	00		
02	A2	LDX	$* 00$
03	00		
04	$4 C$	JMP	0008
05	08		
06	00		
07	E8	INX	
08	$8 E$	STX	0400
09	00		
$0 A$	04		
$0 B$	$8 C$	STY	0401
$0 C$	01		
$0 D$	04		
0 E	E0	CPX	$\#$ FF
$0 F$	FF		
10	D0	BNE	0007
11	F5		
12	C8	INY	
13	C0	CPY	$\# 10$
14	10		
15	D0	BNE	0002
16	EB		
17	FO	BEQ	0000
0018	E7		

AD7548

AD7548-280 INTERFACE
Figure 16 shows a typical AD7548 to 280 microprocessor interface configured for automatic transfer of right-justified data. Similar to the 8085A and 6809 cases, 16 -bit load instructions are available the 780 which can fatch and laed 12 -bit data to the AD7548. Since the low byte of data is moved first and assuming the 12 Since the low byte of data is moved first and assuming the 12 -
bit data scsides at addresses XXYY and $\mathrm{XXYY}+1$, address bit data resides at addresses XXYY and $\mathrm{XXYY}+1$, address
XXYY must conwin the low byre. As before, addresses PPQQ XXYY must contuin the low byte. As before, addresses PPQQ
and PPQQ +1 select the AD7548 CSLSE and CSMSB/LDAC and PPQQ +1 select the AD7548 CSLSE and CSMSB $\overline{\text { LDAC }}$ to hold the 12 -bit data, the two instructions required to update the AD7548 anslog ourput are as follows:

> LD BC, (XXYY)
> LD (PPQQ), BC

Figure 16. AD7548-Z80 Interface (Automatic Transfer Mode)

MECHANICAL INFORMATION
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm)
20-Pin Ceramic DIP (D-20)

20-Pin Plastic Leaded Chip Carrier (P-20A)

20-Pin Plastic DIP (N-20)

20-Pin Leaded Chip Carrier (E-20A)

