LC²MOS
 Dual 12-Bit μ P-Compatible DAC

 AD7549
FEATURES

Two Doubled Buffered 12-Bit DAC
4-Quadrant Multiplication
Low Gain Error (3LSBs max)
DAC Ladder Resistance Matching: 1\%
Space Saving Skinny DIP and Surface Mount Packages
Latch-Up Proof
Extended Temperature Range Operation

APPLICATIONS

Programmable Filters
Automatic Test Equipment
Microcomputer Based Process Control
Audio Systems
Programmable Power Supplies
Synchro Applications

GENERAL DESCRIPTION

The AD7549 is a monolithic dual, 12-bit, current output D/A converter. It is packaged in both $0.3^{\prime \prime}$ wide 20-pin DIPs and in 20-terminal surface mount packages. Both DACs provide four quadrant multiplication capabilities with a separate reference input and feedback resistor for each DAC. The monolithic construction ensures excellent thermal tracking and gain error tracking between the two DACs.
The DACs in the AD7549 are each loaded in three 4-bit nibbles. The control logic is designed for easy processor interfacing. Input and DAC register loading is accomplished using address lines A0, A1, A2 and CS, WR lines. A logic high level on the CLR input clears all registers. Both DACs may be simultaneously updated using the UPD input.
The AD7549 is manufactured using the Linear Compatible CMOS(LC ${ }^{2}$ MOS) process. It is speed compatible with most microprocessors and accepts TTL, 74 HC or 5 V CMOS logic level inputs.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. Small package size: the loading structure adopted for the AD7549 enables two 12-Bit DACs to be packaged in either a small 20 -pin $0.3^{\prime \prime}$ DIP or in 20 -terminal surface mount packages.
2. DAC to DAC matching: since both DACs are fabricated on the same chip, precise matching and tracking is inherent This opens up applications which otherwise would not be considered, i.e., Programmable Filters, Audio Systems, etc.

REV. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication o otherwise under any patent or patent rights of Analog Devices.

Parameter	J, A Versions	$\begin{aligned} & \hline \text { K, B } \\ & \text { Versions } \end{aligned}$	S Version	TVersion	Units	Test Conditions/Comments
ACCURACY						
Resolution	12	12	12	12	Bits	All grades guaranteed monotonic over temperature. Measured using internal R_{FB} and includes effects of leakage current and gain TC.
Relative Accuracy	± 1	$\pm 1 / 2$	± 1	$\pm 1 / 2$	LSB max	
Differential Nonlinearity	± 1	± 1	± 1	± 1	LSB max	
Full Scale Error	± 6	± 3	± 6	± 3	LSB max	
Gain Temperature Coefficient ${ }^{3}$; Δ Gain/ Δ Temperature	± 5	± 5	± 5	± 5	ppm ${ }^{\circ} \mathrm{C}$ max	Typical value is $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Output Leakage Current						
$\begin{aligned} & \mathrm{I}_{\mathrm{OUTt}}(\text { Pin 17) } \\ & +25^{\circ} \mathrm{C} \end{aligned}$				20	nA max	DACA Register loaded with all 0's
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	150	150	250	250	$n A_{\text {max }}$	
$\mathrm{I}_{\text {Outb }}(\operatorname{Pin} 15)$						DACB Register loaded with all 0 's
$+25^{\circ} \mathrm{C}$	20	20	20	20	nA max	
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	150	150	250		nA max	
REFERENCE INPUT						
Input Resistance (Pin 19, Pin 13)		7	7	7	$k \Omega$ min	Typical Input Resistance $=11 \mathrm{k} \Omega$
	18	18	18	18	$\mathrm{k} \Omega_{\text {max }}$	
$\underset{\substack{\mathrm{V}_{\text {REFF }} \\ \text { Input Resistance } \\ \text { Match }}}{ }$		± 2			\% max	Typically $\pm 1 \%$
DIGITALINPUTS						$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$
$\mathbf{V}_{\text {IH }}$ (Input High Voltage)	2.4	2.4	2.4	2.4	$V_{\text {min }}$	
$\mathrm{V}_{\text {IL }}$ (Input Low Voltage)	0.8	0.8	0.8	0.8	$V_{\text {max }}$	
$\mathrm{I}_{\mathrm{IN}}($ Inpui Current)						
$+25^{\circ} \mathrm{C}$	± 1	± 1	± 1	± 1	μ A max	
$\mathrm{T}_{\text {min }}$ 10 $\mathrm{T}_{\text {max }}$	± 10	± 10	± 10	± 10	$\mu \mathrm{A}$ max	
$\mathrm{C}_{\text {IN }}\left(\right.$ Input Capacitance) ${ }^{3}$	7	7	7	7	pF max	
POWER SUPPLY						
I_{DD}	5	5	5	5	mA max	

AC PERFORMANCE CHARACTERISTICS
These characteristics are included for Design Guidance only and are not subject to test
$\left(\mathrm{V}_{\mathrm{DO}}=+15 \mathrm{~V} ; \mathrm{V}_{\mathrm{REA}}=\mathrm{V}_{\mathrm{RFFB}}=+10 \mathrm{~V}, \mathrm{I}_{\text {OUTA }}=\mathrm{I}_{\text {DUTB }}=\mathrm{AGND}=\mathrm{OV}\right.$, Output Amplifiers are ADG44 except where stated. $)$

Parameter	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{A}=\mathrm{T}_{\text {MIN, }}, \mathrm{T}_{\text {Max }}$	Units	Test Conditions/Comments
Output Current Setting Time	1.5	-	$\mu \mathrm{smax}$	To 0.01% of full scale range. Lout load $=1000 ; \mathrm{C}_{\text {EXT }}=13 \mathrm{pF}$. DAC output measured from falling edge of WR. Typical value of Setling Time is $0.8 \mu \mathrm{~s}$.
Digital-to-Analog Glitch Impulse	10	-	nV-sectyp	Measured with $\mathrm{V}_{\text {REFA }}=\mathrm{V}_{\text {RFB }}=0 \mathrm{~V}$. $\mathrm{I}_{\text {OUTA }}, \mathrm{I}_{\text {OUTB }}$ load $=100 \mathrm{n}, \mathrm{C}_{\text {EXT }}=13 \mathrm{PF}$. DAC registers alternately loaded with all 0's and all 1 's.
AC Feedthrough ${ }^{4}$ $V_{\text {Refa }}$ to I Iouta $V_{\text {RefB }}$ to loutr $^{\prime}$	$\begin{aligned} & -70 \\ & -70 \end{aligned}$	$\begin{aligned} & -65 \\ & -65 \end{aligned}$	dB max dB max	$\mathrm{V}_{\mathrm{REFA}}, \mathrm{V}_{\mathrm{REFH}}=20 \mathrm{~V}$ p-p 10 kHz sine wave. DAC registers loaded with all Os.
Power Supply Rejection $\Delta G a i n / \Delta V_{D D}$	± 0.01	± 0.02	\% per \% max	$\Delta V_{D D}= \pm 5 \%$
Output Capacitance Couta Coutb Couta Coutr	$\begin{aligned} & 80 \\ & 80 \\ & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 160 \\ & 160 \end{aligned}$	pF max pF max pF max pF ${ }_{\text {max }}$	DACA, DAC B loaded with all 0 's.
Channel-to-Channel Isolation $V_{\text {REFA }}$ to Ioutr $V_{\text {Refb }}$ to Iouta	$\begin{aligned} & -62 \\ & -62 \\ & \end{aligned}$	-	$\left\lvert\, \begin{array}{l\|} \mathrm{dB} \text { typ } \\ \mathrm{dyp} \end{array}\right.$	$V_{\text {REFA }}=20 V_{p-p} 100 \mathrm{kHz}$ sine wave, $V_{\text {RBFB }}=0 \mathrm{~V}$ $V_{\text {REFB }}=20 \mathrm{~V}$ p-p 100 kHz sine wave, $\mathrm{V}_{\text {REFA }}=0 \mathrm{~V}$
Digital Crossalk	10	-	aV-sectyp	Measured for a Code Transition of all O's soaill 1's
Outpur Noise Voltage Density ($10 \mathrm{~Hz}-100 \mathrm{kHz}$) Harmonic Distortion	15 -90	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}} \mathrm{typ}$ dB typ	Measured between RFBA $^{\text {and }} \mathrm{I}_{\text {OUTA }}$ or $\mathbf{R}_{\text {FBB }}$ and $\mathrm{I}_{\text {OUtr }}$ $\mathrm{V}_{\mathrm{Ny}}=6 \mathrm{~V}$ rms 1 kHz

TTemprater

Parameter	Limit at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Limit at } \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Limait at } \\ & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Units	Test Conditions/Comments
t_{1}	50	80	110	ns min	Address Valid to Write Setup Time
t_{2}	0	0	0	$n s$ min	Address Valid to Write Hold Time
t_{3}	180	200	240	ns min	Data Setup Time
t_{4}	0	0	0	nsmin	Data Hold Time
t_{5}	20	20	20	$n s$ min	Chip Select or Update to Write Setup Time
t_{6}	0	0	0	nsmin	Chip Select or Update to Write Hold Time
t_{7}	170	200	250	ns min	Write Pulse Width
t_{8}	170	200	250	ns min	Clear Pulse Width

Specifications subject to change without notice.

notes
NOTES

1. All IPPUT SIGNAL RISE AND FALL TIMES MEASURED FROM 10% TO
90% OF $+5 V . t_{r}=t_{1}=20 n s$.
2. TIMING MEASUREMENT REFERENCE LEVEL IS $\frac{v_{H}+v_{I t}}{2}$

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
\mathbf{V}_{DD} (Pin 20) to DGND - 0.3V, +17 V
$\mathrm{V}_{\text {Refa }}, \mathrm{V}_{\text {REFB }}$ (Pins 19, 13) to AGND $\ldots \pm 25 \mathrm{~V}$
$\mathrm{V}_{\mathrm{RFBA}}, \mathrm{V}_{\mathrm{RFBB}}$ (Pins 18, 14) to AGND $\pm 25 \mathrm{~V}$
Digital Input Voltage (Pins 1-11)
to DGND
$-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {PINIS }}, \mathrm{V}_{\mathrm{PIN17}}$, to DGND $-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
AGND to DGND $-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Power Dissipation (Any Package)
To $+75^{\circ} \mathrm{C}$. 450 mW
Derates above $+75^{\circ} \mathrm{C}$. $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Operating Temperature Range
Commercial (J, K Versions) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial (A, B Versions) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (S, T Versions) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10secs) + $300^{\circ} \mathrm{C}$
*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION
ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protect ed; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

AD7549

Model 1	Temperature Range	Relative Accuracy	Full Scale Error	Package Option 2
AD7549JN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 6 \mathrm{LSB}$	$\mathrm{N}-20$
AD7549KN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	$\mathrm{N}-20$
AD75499P	-40° to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 6 \mathrm{LSB}$	$\mathrm{P}-20 \mathrm{~A}$
AD7549KP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 3 \mathrm{LB}$	$\mathrm{P}-20 \mathrm{~A}$
AD7549AQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 6 \mathrm{LSB}$	$\mathrm{Q}-20$
AD7549BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	$\mathrm{Q}-20$
AD7549SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 6 \mathrm{LSB}$	$\mathrm{Q}-20$
AD75499Q	$-55^{\circ}{ }^{\circ}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	$\mathrm{Q}-20$
AD754SE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\pm 6 \mathrm{LSB}$	$\mathrm{E}-20 \mathrm{~A}$
AD7549TE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\pm 3 \mathrm{LSB}$	$\mathrm{E}-20 \mathrm{~A}$

NOTES
Torder MIL-STD-883, Class B process parts, add /883B to part number. Contact you ocal sales office for military data sheer
${ }^{2}$ = Leadless Ceramic Chip Carrier; $\mathbf{N}=$ Plastic DIP; $\mathbf{P}=$ Plastic Leaded Chip Carrier; Q $=$ Cerdip.

TERMINOLOGY

RELATIVE ACCURACY

Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero error and full scale error and is normally expressed in Least Significant Bits or as a percentage of full scale reading.

DIFFERENTIAL NONLINEARITY

Differential nonlinearity is the difference between the measured change and the ideal 1LSB change between any two adjacen codes. A specified differential nonlinearity of 1LSB max over the operating temperature range ensures montonicity.

FULL-SCALE ERROR

Full scale error or gain error is a measure of the output error between an ideal DAC and the actual device output. Full scale error is adjustable to zero.

OUTPUT CAPACITANCE

This is the capacitance from I OUTA or I Ioutb to AGND.

DIGITAL-TO-ANALOG GLITCH IMPULSE

The amount of charge injected into the analog output when the inputs change state is called Digital-to-Analog Glitch Impulse.

This is normally specified as the area of the glitch in either pA secs or nV -secs depending upon whether the glitch is measured as a current or voltage signal. Digital charge injection is measured with $V_{\text {REFA }}$ and $V_{\text {REFB }}$ equal to AGND.

OUTPUT LEAKAGE CURRENT

Output Leakage Current is current which appears at $I_{\text {OUTA }}$ or $I_{\text {Oute }}$ with the DAC registers loaded to all zeros.

MULTIPLYING FEEDTHROUGH ERROR
This is the error due to capacitive feedthrough from $V_{\text {REFA }}$ to $I_{\text {OUTA }}$ or $\mathrm{V}_{\text {REFB }}$ to $\mathrm{I}_{\text {OUTB }}$ with the DAC registers loaded to all zeros.

CHANNEL-TO-CHANNEL ISOLATION
Channel-to-Channel Isolation refers to the proportion of input signal from one DAC's reference input which appears at the output of the other DAC, expressed as a ratio in dB.

DIGITAL CROSSTALK

The glitch impulse transferred to the output of one converte due to a change in digital input code to the other converter is defined as Digital Crosstalk and is specified in nV-secs.

PIN CONFIGURATIONS

LCCC

AD7549

UNIPOLAR BINARY OPERATION

(2-QUADRANT MULTIPLICATION)

Figure 2 shows the circuit diagram for unipolar binary operation. With an ac input, the circuit performs 2 -quadrant multiplication The code table for Figure 2 is given in Table II.
Operational amplifiers A1 and A2 can be in a single package (i.e. AD644) or separate packages (AD544). Capacitors Cl and C2 provide phase compensation to help prevent overshoot and ringing when high speed op-amps are used.
For zero offset adjustment, the appropriate DAC register is loaded with all O's and amplifier offset adjusted so that Vouta or $\mathrm{V}_{\text {outr }}$ is at a minimum (i.e. $\leqslant 120 \mu \mathrm{~V}$). Full scale trimming is accomplished by loading the DAC register with all l's and adjusting R1 (R3) so that $\mathrm{V}_{\text {OUTA }}$ (Vouts) $=-\mathrm{V}_{\text {IN }}$ (4095/4096) In fixed reference applications, full scale can also be adjusted by omitting R1, R2, R3, R4 and trimming the reference voltage magnitude.

Figure 2. AD7549 Unipolar Binary Operation
Binary Numberin
DACRegister
MSB

Table II. Unipolar Binary Code Table for Circuit of Figure 2

BIPOLAR OPERATION

(4-QUADRANT MULTIPLICATION)
The recommended circuit diagram for bipolar operation is shown in Figure 3. Offset binary coding is used

With the appropriate DAC register loaded to 100000000000 , adjust R1 (R3) so that $\mathrm{V}_{\text {OUta }}$ (Voutr) $=0 \mathrm{~V}$. Alternatively, R1, R2 (R3, R4) may be omitted and the ratios of R6, R7 (R9, 10) varied for $V_{\text {outa }}\left(V_{\text {outb }}\right)=0 \mathrm{~V}$. Full scale trimming can be accomplished by adjusting the amplitude of $\mathrm{V}_{\text {IN }}$ or by varying the value of R5 (R8).
Resistors R5, R6, R7 (R8, R9, R10) must be ratio matched to 0.01%. When operating over a wide temperature range, it is important that the resistors be of the same type so that their temperature coefficients match.
The code table for Figure 3 is given in Table III

Figure 3. Bipolar Operation (Offset Binary Coding)

Binary Number in DACRegister		Analog Output, Vouta or Vouts
MSB	LSB	
1111	11111111	$+\mathrm{V}_{\text {IN }}\left(\frac{2047}{2048}\right)$
1000	00000001	$+\mathrm{V}_{\text {IN }}\left(\frac{1}{2048}\right)$
1000	00000000	OV
0111	11111111	$-\mathrm{V}_{\text {IN }}\left(\frac{1}{2048}\right)$
0000	0000000	$-\mathrm{V}_{\text {IN }}\left(\frac{2048}{2048}\right)$

Table III. Bipolar Code Table for Offset Binary Circuit of Figure 3

AD7549

APPLICATION HINTS

Output Offset: CMOS D/A converters in circuits such as Figures 2 and 3 exhibit a code dependent output resistance which in turn can cause a code dependent error voltage at the output of the amplifier. The maximum amplitude of this offset, which adds to the D/A converter nonlinearity, depends on $V_{O s}$ where V_{Os} is the amplifier input offset voltage. To maintain monotonic operation, it is recommended that $V_{O s}$ be no greater than $\left(25 \times 10^{-6}\right)\left(V_{\text {REF }}\right)$ over the temperature range of operation. Suitable op amps are AD644L, AD517L and AD544L. The AD517L is best suited for fixed reference applications with low bandwidth requirements: it has extremely low offset $(50 \mu \mathrm{~V})$ and in most applications will not require an offset trim. The AD544L has a much wider bandwidth and higher slew rate and is recommended for multiplying and other applications requiring fast settling. An offset trim on the AD544L may be necessary in some circuits.

Temperature Coefficients: The gain temperature coefficient of the AD7549 has a maximum value of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and typical value of $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. This corresponds to worst case gain shifts of 2 LSBs and 0.4 LSB respectively over a $100^{\circ} \mathrm{C}$ temperature range. When trim resistors $\mathrm{R} 1(\mathrm{R} 3)$ and $\mathrm{R} 2(\mathrm{R} 4)$ are used to adjust full scale range, the temperature coefficient of $\mathrm{R} 1(\mathrm{R} 3)$ and $\mathrm{R} 2(\mathrm{R} 4)$ should also be taken into account.
High Frequency Considerations: AD7549 output capacitance works in conjunction with the amplifier feedback resistance to add a pole to the open loop response. This can cause ringing or oscillation. Stability can be restored by adding a phase compensation capacitor in parallel with the feedback resistor.
Feedthrough: The dynamic performance of the AD7549 depends upon the gain and phase stability of the output amplifier, together with the optimum choice of PC board layout and decoupling components. A suggested printed circuit layout for Figure 2 is shown in Figure 4 which minimizes feedthrough from $V_{\text {REFA }}$, $\mathrm{V}_{\mathrm{REFB}}$ to the output in multiplying applications.

Figure 4. Suggested Layout for AD7549 with AD644 (Dual Op Amp)

AD7549 - 8085A INTERFACE

A typical interface circuit for the AD7549 and the 8085A microprocessor is given in Figure 5. Only the bottom 4 bits of the microprocessor data bus are used. The address decoder provides both the $\overline{\mathrm{CS}}$ and UPD signals for the DAC. Address lines A0, A1, A2 select one of six DAC Input Registers for accepting data. In applications where simultaneous loading of the DACs is required then the UPD pin must be used to strobe both DAC registers. Otherwise, UPD may be tied high and address lines A0-A2, in conjunction with $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ signals, will select each DAC register separately (see Pin Function Description).

Figure 5. AD7549-8085A Interface
AD7549-280 INTERFACE
Figure 6 shows the AD7549 connected to the Z80 microprocessor. The interface structure is similar to that for the 8085A.

*LINEAR CIRCUITRY OMITTED FOR CLARITY
Figure 6. AD7549-Z80 Interface

AD7549

AD7549-8048 INTERFACE
The AD7549 can be interfaced to the 8048 single componen microcomputer using the circuit of Figure 7. A minimum number of I/O lines are needed. The system is easily expanded by using extra port lines to provide Chip Selects for more AD7549's. The advantage of this interface lies in its simplicity. In either single or multiple DAC applications both the software and chip selec decoding are simplified over what would be required if the devices were memory mapped in a conventional manner.

*LINEAR CIRCUITRY OMITTED FOR CLARITY
Figure 7. AD7549-8048 Interface

The combination of 8048 system and AD7549 is particularly suitable for dedicated control applications. By adding reference and output circuitry a complete control system can be configured with a minimum number of components.

AD7549 - MC6809 INTERFACE
Figure 8 is the interface circuit for the popular MC6809 8-bi microprocessor. $\overline{\mathrm{CS}}$ and $\overline{\text { UPD }}$ signals are decoded from the address for the simultaneous update facility while the $\overline{W R}$ pulse is provided by inverting the microprocessor clock, E.

Figure 8. AD7549-MC6809 Interface

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

20-Pin Plastic DIP (N-20)

20-Terminal Plastic Leaded Chip Carrier (P-20A)

20-Pin Cerdip (Q-20)

E-20 LCCC E Package

