LC²MOS Complete, High Speed 12-Bit ADC AD7572

FEATURES

12-Bt Resolution and Accuracy
Fest Conversion Time
A07572XX05: $5 \mu s$ A07572XX12: 12.5μ
Complete with On-Chip Reference
Fast Bus Access Time: ©Ons
Low Power: 135 mW
Small, 0.3", 24-Pin Peckege
and 28-Terminal Surface Mount Packages

GENERAL DESCRIPTION

The AD7572 is a complere, 12 -bit ADC that offers high speed performance combined with low, CMOS power levels. The AD7572 uses an accurate, high speed DAC and comparator in a successive-approximation loop to achieve a fast conversion time. An on-chip, buried Zener diode provides a stable reference voltage to give low drift performance over the full temperature range and the specified accuracy is achieved without any user trims. An on-chip clock circuit is provided, which may be used with a crystal for stand-alone operation, or the clock input may be driven from an external clock source such as a divided-down microprocessor clock. The only other external components required for basic operation of the AD7572 are decoupling capacitors for the supply voltages and reference outpur.
The AD7572 has a high speed digital interface with three-state datz outputs and can operate under the control of standard microprocessor Read (RD) and decoded address (CS) signals Interface timing is sufficiendy fast to allow the AD7572 to operate with most popular microprocessors, with three-state enable times of only 90 ns and bus relinquish times of 75ns.
The AD7572 is fabricated in Analog Devices Linear Compatible CMOS process ($\mathrm{LC}^{2} \mathrm{MOS}$), an advanced, all ion-implanted process that combines fast CMOS logic and linear, bipolar circuits on a single chip, thus achieving excellent linear performance while still retaining low CMOS power levels.
The AD7572 is available in both $0.3^{\prime \prime}$ wide , 24-pin DIPs and in a 28-terminal plastic leaded chip carrier (PLCC) and leadless ceramic chip carrier (LCCC)
$\mathrm{N}_{\Delta t}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=-15 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\text {cux }}: 2.5 \mathrm{MHzz}$ for AD7572x<05, 1 MHz for

Premetor		$\mathbf{K}, \mathbf{E}, \mathbf{T}$ Vericicar	L. Verrion	c, U Verrions	Uaits	Tess Condidoencomments		
ACCURACY								
Resolution	12	12	12	12	Bits			
Imagral Nonlinearity (ii + $\mathbf{2 5}^{5} \mathrm{C}$	± 1	± 1	$\pm 1 / 2$	$\pm 1 / 2$	LSB max			
$\mathrm{T}_{\text {mid }}$ to $\mathrm{T}_{\text {max }}$	± 1	± 1	$\pm 1 / 2$	± 314	LSB max			
Differential Nonlinearity	± 1	$=1$	$=1$	± 1	LSB max			
Minimum Resolution for which no Missing Codes are Guaranteed	12	12	12	12	BissLSE max			
	± 4	± 3	± 3	± 3		Typical Change over Temp Is $=$ ILSB		
T_{ms} 10 $\mathrm{T}_{\text {mex }}$	± 6	± 9	± 4	± 4	LSB max			
Full Scale (FS) Error ${ }^{2}$ a ${ }^{\text {a }}+25^{\circ} \mathrm{C}$	± 15	± 10	± 10	± 10	LSB max			
Full Scale TC ${ }^{\text {3/4 }}$	45	25	25		$\mathrm{ppmF}^{\text {c max }}$	$V_{D D}=S V V_{S S}=-$ ISV;FS $=S V$ Ideal Lat Code Transition $=$		
Inpui Voltage Range Inpui Current	$000+5$ 3.5	$020+5$ 3.5	$0 \text { to }+5$ 3.5	$010+5$ 3.5	Volts mA max	For Bipoler Operation See Figures 10 \& 12		
INTERNAL REFERENCE VOLTAGE								
$V_{\text {ReF }}$ Output @ $+25^{\circ} \mathrm{C}$	${ }_{40}^{-5.21-5.3}$	${ }_{20}^{-5.21-9.3}$	$2_{20}^{-5.2 i-5.3}$	${ }^{-50}$	$\mathrm{Vman}^{\prime \prime} \mathrm{V}^{\text {max }}$	$-5.25 V \pm 1 \%$		
Ourput Currear Sink Capebility	550	350	550	550	μA max	External Lond Should Not Change		
						During Conversion		
POWFR SUPPLY REIECTION $V_{\text {DD Only }}$ $\pm 1 / 2$ $\pm 1 / 2$ $\pm 1 / 2$ $\pm 1 / 2$ LSB typ FSChange, $V_{s s}=-15 V$								
$\mathrm{V}_{\text {ss }}$ Only	$\pm 1 / 2$	LSB typ	FSCharge, $V_{D D}=5 V$					
LOGICINPUTS								
$V_{\text {inl }}$. Input Low Votuge	+0.8	+0.8	+0.8	+0.8	$V_{\text {max }}$	$V_{\text {D }}=5 \mathrm{SV}=5 \%$		
$\mathrm{V}_{\text {INH, }}$ Input High Votage	+2.4	+2.4	+2.4	+2.4	$V_{\text {min }}$			
$\mathrm{C}_{\text {IN, }}$ ' l pput Capacitance	10	10	10	10	pF max			
CS, $\overline{\text { RD }}$, HBEN								
$\mathrm{I}_{\text {IN, }}$ Inpuit Current	± 10	± 10	± 10	± 10	$\mu A_{\text {max }}$	$V_{\text {IN }}=010 V_{\text {Dn }}$		
CLKIN I IN. Input Current	± 20	$=20$	± 20	± 20	$\mu \mathrm{Amax}$	$V_{I N}=0 t 0 V_{\text {Dn }}$		
LOCICOUTPUTS								
DII-Ders, EUSY, CLK OUT						$\begin{aligned} & l_{\text {SNK }}=1.6 \mathrm{~mA} \\ & l_{\text {SOURCE }}=200 \mu \mathrm{~A} \end{aligned}$		
Vol., Outpur Low Volrage	+0.4	+0.4	+0.4	+0.4	$V_{\text {max }}$			
$\mathrm{V}_{\text {OH, }}$, Output High Volage	+4.0	+4.0	+4.0	+4.0	$V_{\text {min }}$			
DH-D0/8								
Floating State Leakage Cursent Fhouing Suate Outpur Capecitance'	$\begin{aligned} & \pm 10 \\ & i 5 \end{aligned}$	± 10	$\begin{aligned} & \pm 10 \\ & i^{10} \end{aligned}$	$=10$	$\mu \mathrm{A}$ max pFimax			
CONVERSION TIME								
Synchronous Clock								
					$\mu \mathrm{max}$ $\mu 5 \min / \max$			
Asynchmonous Clock	4.815.2	4.815.2	4.8/5.2	4.8/5.2		Control Inpurs Synchronization		
Syachronous Clock Asynchronous Clock	12.5	12.5	12.5	12.5	us max	$\mathrm{f}_{\text {C.K }}=1 \mathrm{MHz}$		
	$12 / 13$	12.13	$12 / 13$	1213	$\mu^{\mu} \min / \mu \mathrm{s}$ max			
$V_{\text {no }}$	15	+ 5	+ 5	+ 5	VNOM	$\pm 5 \%$ for Specified Perfortanance $\pm 5 \%$ for Specified Performance CS $=R D=V_{D O}, A 1 N=5 V$ $\overline{C S}=\overline{R D}=V_{D D}, A I N=5 V$		
V_{33}	-15	-15	-15	-15	VNOM			
$1 \mathrm{ln}^{6}$	7	7	7	7	$\mathrm{mA}_{\text {max }}$			
$1 \mathrm{ss}{ }^{6}$	12	12	12	12	mA max			
Power Dissipation	135	135	135	135	mWeyp			
	215	215	215	215	mW max			

Notes
A, X, LV Verionas, 0 oo 700 C .

Thichume imerne vohase referewor dift.
'Smople vesca ne enswe crapppacs.
Sparificrions mbinet rochenge widtour nocioc.

TIMING CHARACTERISTICS ${ }^{1} N_{m}=5, v_{s}-15 m$

Parameter	Limit at $+25^{\circ} \mathrm{C}$ (All Grades)	Limit at $T_{\text {min }} T_{\text {mar }}$ (J, K, L, A, B, C Grades)	$\begin{array}{\|l\|} \hline \text { Limit at } \mathbf{T}_{\text {min }}, \mathbf{T}_{\text {max }} \\ \left(\mathbf{S}, \mathbf{T}, \cup \mathbf{G r a t e s}^{2}\right. \\ \hline \end{array}$	Units	Conditions/Comments
5_{1}	0	0	0	ns min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Serup Time
${ }_{3}$	190	230	270	nsmax	रD to BUSY Propagation Delay
$\mathrm{c}_{3}{ }^{2}$	90	110	120	nsmax	Data Access Time after RD, $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
	125	150	170	ns max	Data Access Time after $\overline{\mathrm{RD}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
4	t_{3}	t_{3}	i_{3}	ns min	RD Pulse Width
5_{5}	0	0	0	nsmin	$\overline{\mathrm{CS}}$ ro $\overline{\mathrm{RD}}$ Hold Time
$4{ }^{2}$	70	90	100	ns max	Data Setup Time after BUSY
$7_{7}{ }^{3}$	20	20	20	ns min	Bus Relinquish Time
	75	85	90	ns max	
t_{k}	0	0	0	ns min	HBEN to $\overline{\mathrm{RD}}$ Setup Time
$t 9$	0	0	0	ns min	HBEN to $\overline{\text { RD }}$ Hold Time
t_{10}	200	200	200	nsmin	Delay Between Successive Read Operations

NOTES
${ }^{\prime}$ Timing Specifications are sumple tested at $+25^{-}$Cio ensure complimnce. All input control signals are specified with
$\mathrm{t}=\boldsymbol{\sigma}=\mathrm{S}_{\mathrm{Bs}}(10 \%$ to 90% of +5 V) and tiged from a voltage krel of 1.6 V
${ }^{2}{ }_{i}$ and i_{0} are measured with the loed circuits of Figure I and defined as the time required for an
ourpur momes 0.8 V or 2.4 V
${ }^{3} t \rightarrow$ is defined so the time required for the data lines to change 0.5 V when loeded with the circuits of Figure 2 .
Specifications subject to change without notice.

Figure 1. Load Circuits for Access Time

a. Vow to High-Z

b. Vol to High-Z

ABSOLUTEMAXIMUMRATINGS*

V_{nn} to DGND -0.3V to +7V	
$V_{\text {Ss }}$ to DGND	V $10-17 \mathrm{~V}$
AGND to DGND	$V_{D D}+0.3 V$
AIN to AGND	V
Digital Input Voltage to DGND	
Digital Outpur Voltage to DGND	
Operating Temperature Range	
Commercial (J, K, I. Versions)	$0 \mathrm{to}+70^{\circ} \mathrm{C}$
Industrial ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ Versions)	$25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (S, T, U Versions)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 secs)	$+300^{\circ} \mathrm{C}$
Power Dissipation (Any Package) to $+75^{\circ} \mathrm{C}$	$1,000 \mathrm{~mW}$
Derates above $+75^{\circ} \mathrm{C}$ by	$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
"Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these of any other condition above those indicated in the operational sectinns of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliahility.	

CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective form should be discharged to the destination socket before devices are removed.

ORDERING GUIDE ${ }^{1}$

Model ${ }^{2}$	Convertion Time	Temperature Range	$\begin{aligned} & \text { Full-Seale } \\ & \text { TC } \end{aligned}$	Accuracy Grade	Package Option ${ }^{3}$
AD7572]N05	$5 \mu s$	0 to +70 ${ }^{\circ} \mathrm{C}$	45ppm/ ${ }^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	N-24
AD7572KN0S	$S_{\mu} \mu$	0 to $+70^{\circ} \mathrm{C}$	25ppm/ ${ }^{\circ} \mathrm{C}$	± 1 LSB	N-24
AD7572LN0S	$S^{\prime} \mu$	0 to $+70^{\circ} \mathrm{C}$	25ppm/ ${ }^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	N-24
AD7572JP0S	S_{μ}	0 to $+70^{\circ} \mathrm{C}$	45ppm/ ${ }^{\circ} \mathrm{C}$	± 1 LSB	P-28A
AD7572KPOS	$\mathrm{S}_{\text {L }}$	0 to $+70^{\circ} \mathrm{C}$	25ppm/ $/{ }^{\circ}$	± 1 LSB	P-28A
AD7572LP0S	Sus	0 to $+70^{\circ} \mathrm{C}$	25ppm/ $/{ }^{\circ}$	$\pm 1 / 2$ LSB	P-28A
AD7572AQ05	5 $\mathrm{\mu}$ s	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	45ppm/ ${ }^{\circ} \mathrm{C}$	± 1 LSB	Q-24
AD7572BQ05	S_{μ}	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25ppm/ ${ }^{\circ} \mathrm{C}$	$\pm 11.5 B$	Q-24
AD7572CQ05	SMs	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25ppm/ ${ }^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	Q-24
AD7572SQ0S	$\mathrm{SH}^{\text {s }}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	45ppm/ ${ }^{\circ} \mathrm{C}$	± 1 LSB	Q-24
AD7572TQ05	SMs	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	Q-24
AD7572UQ05	Sus	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	25ppm/ ${ }^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	Q-24
AD7572SE05	$5 \mu \mathrm{~s}$	$-35^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$45 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\pm ILSB	E-28A
AD7572TE05	$5 \mu s$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$25 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	± 1 LSB	E-28A
AD7572UE05	S $\mu \mathrm{s}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	25ppm/ $/{ }^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	E-28A
AD7572JN12	12.5 ${ }^{\text {s }}$	0 to $+70^{\circ} \mathrm{C}$	$45 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	+1LSB	N-24
AD7572KN12	$12.5 \mu \mathrm{~s}$	0 to $+70^{\circ} \mathrm{C}$	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	N-24
AD7572LN12	$12.5 \mu \mathrm{~s}$	0 to $+70^{\circ} \mathrm{C}$	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	N-24
AD7572JP12	12.54 s	0 to $+70^{\circ} \mathrm{C}$	$45 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\pm ILSB	P-28A
AD7572KP12	$12.5 \mu \mathrm{~s}$	0 to $+70^{\circ} \mathrm{C}$	25ppm/ $/{ }^{\circ} \mathrm{C}$	$\pm 1 L S B$	P-28A
AD7572LP12	12.5 ${ }^{\text {es }}$	0 to $+70^{\circ} \mathrm{C}$	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1 / 21 . S B$	P.28A
AD7572AQ12	$12.5 \mu \mathrm{~s}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$45^{\text {ppmm }} /{ }^{\circ} \mathrm{C}$	\pm ILSB	Q-24
AD7572BQ12	12.5 ${ }^{\text {es }}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25ppm/ ${ }^{\circ} \mathrm{C}$	\pm ILSB	Q-24
AD7572CQ12	12.5 $\mu \mathrm{s}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25ppm/ ${ }^{\circ} \mathrm{C}$	$\pm 1 / 2 L S B$	Q. 24
AD7572SQ12	12.5 ${ }^{\text {s }}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	45ppm/ $/{ }^{\circ} \mathrm{C}$	\pm ILSB	Q. 24
AD7572TQ12	$12.5 \mu \mathrm{~s}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	Q-24
AD7572UQ12	12.5 Ms	$-5^{\circ}{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1 / 2 L S B$	Q-24
AD7572SE12	12.5 ${ }^{\text {es }}$	$-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$	$45 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\pm ILSB	E-28A
AD7572TE12	12.5 ${ }^{\text {es }}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	\pm ILSB	E-28A
AD7572UE12	$12.5 \mu \mathrm{~s}$	$-35^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	25ppm/ $/{ }^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	E-28A

note

Analog Devicer Reserves the right to ship cermmic (D-24A) in bieu cerdip (Q-24) hermetic package. To order MIL-STD-883, Clasa B processed parts, add /883B to part number. Contact your fucal sales office for military daca sheet. For U.S. Standard Military Drawing (SMD) see DESC Drawing \#5962-87591 $D=$ Ceranic DIP; $\mathrm{E}=$ Lendess Ceramic Chip Cursier (LCCC); $\mathrm{N}=$ Plastic DIP; $\mathrm{P}=$ Plastic Leaded Chip Carrier (PLCC); $Q=$ Cerdip.

AD7572

PIN FUNCTION DESCRIPTION

DIP Pin No.	Mnemonic	Description
1	AIN	Antiog Input.
2	$\mathrm{V}_{\text {ReF }}$	Voluge Reference Outpur. The AD7572 has its own internal - 5.25 V reference.
3	AGND	Anslog Ground.
4... 11	D11. . .D4	Three State data outputs. They become acive when $\overline{C S}$ and $\overline{\mathrm{RD}}$ are broughr low.
$13 . . .16$	D3/11... D0/8	Individual pin function is dependent upon High Byte Enable (HBEN) Input.

data rus outpur, $\overline{C S} k \overline{\mathrm{DD}}=$ LOW

DB11 . . . DBO are the 12 -bit converion retults, DB11 is the MSB

12	DGND	Digital Ground.
17	CLKIN	Clock Input pin. An external TTL compatible clock may be applied to this pin. Alternatively a crysal or ceramic resonator may be connected berween CLK IN (Pin 17) and CLK OUT (Pin 18).
18	cle OUT	Clock Output Pin. An invertod CLK IN signal appears at CLK OUT when an external clock is used. See CLK IN (Pin 17) description for crystal (resonator).
19	HBEN	High Byte Enable input. Its primary function is to multiplex the 12 -bits of conversion data onto the lower D7 . . . D0/8 outputs (4MSBs or 8 LSBs). See Pin description $4 \ldots 11$ and $13 \ldots 16$ It also dissbles conversion start when HBEN is high.
20	$\overline{\mathbf{R D}}$	READ input. This active LOW signal, in coniunction with $\overline{C S}$ is used to enable the output data three state drivers and initizte a conversion if CS and HBEN arc low.
21	CS	CHIP SELECT Input. This active LOW signal, in conjunction with RD is used to enable the output data three state drivers and initiate a conversion if $\overline{\text { RD }}$ and HBEN are how.
22	BUSY	$\overline{\text { BUSY }}$ output indicates converter status. $\overline{\text { BUSY }}$ is LOW during conversion.
23	$\mathrm{V}_{\text {ss }}$	Negative Supply, $\mathbf{- 1 5 V}$.
24	$V_{\text {DD }}$	Positive Supply, +5 V .

ORDERUNG INFORMATION ${ }^{1,2}$

CONVERSION TIME $=5 \mu \mathrm{~s}$

$\begin{aligned} & \text { Fuluscake } \\ & \text { TC } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Accuraty } \\ \text { Grade } \end{array}$			
		$010+100 \mathrm{C}$	$-25 \mathrm{C}_{10}+85^{\circ} \mathrm{C}$	$-555^{\circ} \mathrm{C} 10+125$
		Masic DiP		Hemetice ${ }^{\text {dip }}$
	$\pm 1 L \leq 3$	ADSsiznos	ansmiados	AD7s72S00
	± 1258	AD2572KNos	ADiszzcios	Andszit
	$\pm 112 \mathrm{LSB}$	AD752L2 ${ }^{\text {a }}$	adzs72CPOS	ADP572LCOS
		R.cc ${ }^{\text {d }}$		${ }^{\text {ccce }}$
	= 12SB	AD7573P0S		ADT32SEOS
	=1258	AD7572KP0S		AD7372TEOS

CONVERSION TIME $=12.5 \mu \mathrm{~s}$

$\begin{aligned} & \text { Fabscake } \\ & \text { Tc } \end{aligned}$	$\begin{aligned} & \text { Accuracy } \\ & \text { Grede } \end{aligned}$			
		$9 \mathrm{Or}+\mathrm{moc}$	$-25 \mathrm{ClO}_{10}+\mathrm{BSO}$	$-\mathrm{ssc} 10+125 \mathrm{c}$
		Plasic Dif	Hermeute ${ }^{\text {dip }}$	Hemetic' ${ }^{\text {dip }}$
	=3Ls8	ADTsh2] 12	AD7312A012	ADTST2SO12
	-115s	AD7s72kN12	ADPTrisqli	AD7\%\%TTR12
	$\pm 1 / 2.58$	AD7sh2L.N12	AD7572:C12	ADTs72以
		PLCC'		${ }^{\text {LCCC }}$
	± 1258			AD7s72SE12
	$=12.58$	AD752KP12		ADSS2TE12
	$\pm 12 \mathrm{LSB}$	AD572LP12		ADTs72UE12
Noriss				

REV. A

OPERATIONAL DIAGRAM
An operational diagram for the AD7572 is shown in Figure 3. The AD7572 is a 12 -bit successive approximation AD converter. The addition of just a crystal/ceramic resonator and a few capacitors enables the device to perform the analog-to-digial function.

AD7572

CONVERTER DETAILS

Conversion start is controlled by the $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$ and HBEN inputs. At the start of conversion the successive approximation register (SAR) is reset and the three-state data outputs are enabled. Once a conversion cycle has begun it cannot be restarted.
During converaion, the internal 12 -bit voluge mode DAC output is sequenced by the SAR from the most significant bit (MSB) to the least significant bit (LSB). Referring to Figure 4, the AIN input connects to the comparator inpur via $2.5 \mathrm{k} \Omega$. The DAC which has a similar $2.5 \mathrm{k} \Omega$ output impedance connects to the same comparator input. Bit decisions are made by the comparator (zero crosing detector) which checks the addition of each succeasive weighted bit from the DAC output. The MSB decision is made 80ns (typically) afier the second falling edge of CLK IN following a conversion start. Similarly, the succeeding bit decisions are made approximately 80 ans after a CLK IN edge until conversion is finished. At the end of conversion, the DAC output current belances the ANN input current. The SAR contents (12-bit data word) which represent the AIN input signal is loeded into a 12 -bit latch.

Figure 4. AD7572 AIN Input

Figure 5. Operating Waveforms Using an External Clock Source for CLK IN

CONTROL INPUTS SYNCHRONIZATION

 In applications where the $\overline{R D}$ control input is not synchronized with the ADC clock then conversion time can vary from 12 to 13 CLK IN periods. This is because the ADC waits for the first falling CLK IN edge after conversion start before the conversion procedure begins. Without synchronization, this delay can vary from zero to an entire clock period. If a constant conversion time is required, then the following approach ensures a fixed 5μ s conversion time for the AD7572XX05 and $12.5 \mu \mathrm{~s}$ for the AD7572XX12: when initiating a conversion, $\overline{\mathrm{RD}}$ must go low on either the rising edge of CLK IN or the falling edge of CLK OUT.
DRIVING THE ANALOG INPUT

During conversion, the AN input current is modulated by the DAC output current at a rate equal to the CLK IN frequency (i.e., 2.5 MHz when $C L K I N=2.5 \mathrm{MHz}$). The analog input voltage must remain fixed during this period and as a result must be driven from an op amp or sample hold with a low output impedance. The output impedance of an op amp is equal to the open loop ourput impedance divided by the loop gain at the frequency of interest.
Suitable devices capable of driving the AD7572 AlN inpur are the AD OP-27 and AD711 op amps or the AD585 sample hold.

INTERNAL CLOCK OSCILLATOR

Figure 6 shows the AD7572 internal clock circuit. A crystal or ceranaic resonator may be connected between CLK IN (Pin 17) and CLK OUT (Pin 18) to provide a clock oscillator for the ADC timing. Alternatively the crystal/resonator may be omitted and an extermal clock source may be connected to CLK IN. For an external clock the mark/space ratio must be 50/50. An inverted CLK IN signal will appear at the CLK OUT pin as shown in the operating waveforms of Figure 5.

Figure 6. AD7572 Internal Clock Circuit

INTERNAL REFERENCE

The AD7572 has an on-chip, buffered, temperarure-compensated buried Zener reference, which is factory trimmed to -5.25 V $\pm 1 \%$. It is internally connected to the DAC and is also available at Pin 2 to provide up to $550 \mu \mathrm{~A}$ current to an external load.
For minimum code transition noise the reference output should be decoupled with a capacitor to filter out wideband noise from the reference diode ($10 \mu \mathrm{~F}$ of tantalum in parallel with 100 nF ceramic). However, large values of decoupling capacitor can affect the dynamic response and stability of the reference amplifier A 10Ω resistor in series with the decoupling capacitors will eliminate this problem without adversely affecting the filtering effect of the capacitors. A simplified schematic of the reference with its recommended decoupling components is shown in Figure 7.

Figure 7. AD7572 Internal - 5.25V Reference

AD7572

UNIPOLAR OPERATION

Figure 8 shows the ideal inputoutput characteristic for the 0 to 5 volt input range of the AD7572. The designed code transitions occur midway between successive integer LSB values (i.e., 1/2LSB, 3/2LSBs, 5/2LSBs . . . FS-3/2LSBs). The output code is nerural binary with $1 \mathrm{LSB}=\mathrm{FS} / 4096=(5 / 4096) \mathrm{V}=$ 1.22 mV .

AIN. INPUT VOLTAOE IN TEMMS Of LSE:SI
Figure 8. AD7572 ideal input/Output Transfer Characteristic

UNIPOLAR OFFSET AND FULLSCCALE ERROR

 ADJUSTMENTIn applications where absolute accurwy is important then offset and full-scale error can be adjusted to zero. Offset error must be adjusted before full-scale error. Figure 9 shows the exre com. ponents required for full-scalc error adjustment. Zero offsect is achieved by adjusting the offset of the op amp driving AIN (i.e., Al in Figure 9.). Far zero offser error apply 0.61 mV (i.e., $1 / 2 L S B$) at $V_{\text {DN }}$ and adjust the op amp offsec voluge unil the ADC ourput code flickers between 000000000000 and 000000000001.

For zero full-scale error apply an analog input of 4.99817V (i.c., FS-3/2LSBs or last code urenaition) at V_{IN} and adjust R1 until the ADC output code flickers between 111111111110 and 111111111111

- adoinional pins omrted for clarity

Figure 9. Unipolar 0 to +5 V Operation with Gain Error Adjust

bipolar operation

Figures 10 and 12 show how bipolar operation can be achieved with the AD7572. Both circuits use an op-amp to offset the analog signal ($\mathrm{V}_{1 \mathrm{~N}}$) by 2.5 V . Alternatively, the $\mathrm{op} \operatorname{mp}(\mathrm{Al})$ can be replaced by a sample hold as shown in Figure 24. The op amp transfer functions are given below:
Figure 10: AIN $=\left(\mathrm{V}_{1 \mathrm{~N}}+2.5\right)$ volts
Figure 12: $\mathrm{AIN}=\left(-\mathrm{V}_{\mathrm{IN}}+2.5\right)$ volts
Both circuits have an analog input range of $\pm 2.5 \mathrm{~V}$ and an LSB size of 1.22 mV . The output codes are offset binary for Figure 10 and complementry offset binary for Figure 12. Their ideal inputoutput transfer characteristics after offset and full scale adjustmear are shown in Figures 11 and 13.
Signal ranges other than $\pm 2.5 \mathrm{~V}$ are eaxily accommodated using different values of R3 and R4 for Figure 10, and a different R2 value for Figure 12. These resistors should be chosen such that the voluge range at AIN covers the full dynamic range (i.e., OV to SV) of the ADC. All resistors should be the same type and from the same manufacturer so that their temperature coefficients match.

Figure 10. AD7572 Bipolar Operation - Output Code is Offset Binary

Figure 11. Ideal Input/Output Transfer Characteristic for the Bipolar Circuit of Figure 10

AD7572

-adoltional pins omitteo for clarity
Figure 12. AD7572 Bipolar Operation - Output Code is Complementary Offset Binary

Figure 13. Ideal Input Output Transfer Characteristic for the Bipolar Circuit of Figure 12

OFFSET AND FULL-SCALE ERROR

In most Digital Sigral Processing (DSP) applications offset and full-scale error have little or no effect on system performance. A typical example is a digital filter, where an amalog signal is quan tized, digitally processed and recreated using a DAC. In these type of applications the offset error can be eliminated by ac coupling the recreated signal. Full-scale error effect is linear and does not cause problems as long as the input signal is within the full dynamic range of the ADC. An important parameter in DSP applications is Differential Nonlinearity and this is not affected by either offset or full-scale error.

In measurement applications where absolute accuracy is required, offset and full-scale crror can be adjusted to zero as in Figure 14.

Figure 14. AD7572 Bipolar Operation with Offset and Gain Error Adjust

BIPOLAR OFFSET AND FULL-SCALE ERROR

ADJUSTMENT

The bipolar circuit of Figure 10 can be adjusted for offset and full-scale errors, by including two porentiomerers R5 and R6, as shown in Figure 14. Offset must be adjusted before full-scale error. This is achieved by applying an analog input of 0.61 mV (1/2LSB) at $V_{I N}$ and adjusting R5 until the ADC output code flickers between 100000000000 and 100000000001 .
For full-scale error adjustment, the analog input must be at 2.49817 volts (i.e., FS/2 - 3/2LSBs or last transition point) Then R6 is adjusted uncil the ADC output code flickers between 111111111110 and 111111111111.
A similar offset and full-scale error adjustment procedure may be employed for Figure 12 by making R1 and R2 variable. Offsel must again be adjusted before full scale error. This is acheved by applying an analog input of 0.61 mV at $\mathrm{V}_{\text {IN }}$ and adjusting R1 until the ADC output code flickers between 011111111110 and 011111111111.
For full-scale error adjust, apply a signal source of 2.49817 V at $V_{\text {IN }}$ and adjust $R 2$ until the ADC output code fickers between 000000000000 and 000000000001 .

APPLICATION HINTS

Wire wrap boards are not recommended for high resolution or high-speed AD converters. To obtain the best performance from the AD7572 a printed circuit board is required. Layout for the printed circuir board should ensure that digital and analog signal lines are separated as much as possible. In particular, care should be taken not to run any digital track alongside an analog signal track or underneath the AD7572. The analog input should be screened by AGND.
A single point analog ground (STAR ground) separate from the logic system ground should be established at Pin 3 (AGND) or as close as possible to the AD7572 as shown in Figure 15. Pin 12 (AD7572 DGND) and all other analog grounds should be connected to this single analog ground point. No other digital grounds should be connected to this analog ground point. Low impedance analog and digital power supply common returns are essential to low noise operation of the ADC and the foil width for these tracks should be as wide as possible.
Noise: Input signal lcads to AIN and signal recurn leads from AGND (Pin 3) should be kept as short as possible to minimize input noise coupling. In applications where this is not possible, a shielded cable berween source and ADC is recommended. Also, since any porential difference in grounds berween the signal source and ADC appears as an error voltage in series with the input signal, attention should be paid to reducing the ground circuit impedances as much as possible.
In applications where the AD7572 data outputs and control signals are connected to a continuously active microprocessor bus, it is possible to get LSB errors in conversion results. Thes errors are due to feedthrough from the microprocessor to the successive approximation comparator. The problem can be eliminated by forcing the microprocessor into a WAIT state during conversion (see Slow Memory Mode interfacing), or by using three-state buffers to isolate the AD7572 data bus.

Figure 15. Power Supply Grounding Practice

TLMING AND CONTROL

Conversion start and data read operuiems are controlled by three AD7572 digital inputs; HBEN, $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$. Figure 16 shows the logic structure associated with these inputs. The three signals are internally gated so that a logic "0" is required on all three inputs to initiate a conversion. Once initiated it cannot be re-started until conversion is complete. Converter status is indicated by the $\overline{B U S Y}$ output, and this is low while conversion is in progress.

There are two modes of operation as outlined by the timing diagrams of Figures 17 to 20. Slow Memory Mode is designed for microprocessors which can be driven into a WAIT state, a READ operation brings $\overline{C S}$ and $\overline{\mathrm{RD}}$ low which initiates a con version and data is read when conversion is complete. The second is the ROM Mode which does not require microprocessor WAIT states, a READ operation brings $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low which initiates a conversion and reads the previous conversion result.

DATA FORMAT

The output data format can either be a complete parallel load (DB1I..DB0) for 16-bit microprocessors or a two byte load for 8-bit microprocessors. Data is always right justificd (i.c., LSB is the most right-hand bit in a 16 -bit word. For a two byte read, only data cutputs D7 . . . D0/8 are used. Byte selection is governed by the HBEN input which controls an internal digital multiplexer This multiplexes the 12 -bits of conversion data onto the lower D7 . . . D0/8 outputs (4 MSBs or 8 LSBs) where it can be read in two read cycles. The 4 MSB's always appear on D11 . . . D8 whenever the three-state output drives are turned on.

Figure 16. Internal Logic for Control Inputs $\overline{C S}, \overline{R D}$ and HBEN

SLOW MEMORY MODE, PARALIEL. READ (HBEN = LOW)
Figure 17 and Table I shows the timing diagram and data bus status for Slow Memory Mode, Parallel Read. $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ going low triggers a conversion and the AD7572 acknowledges by taking BUSY low. Data from the previous conversion appears on the three state data ourputs. BUSY returns high at the end of conversion when the output latches have been updated and the conversion result is placed on data outputs D11 . . . D0/8.

SLOW MEMORY MODE, TWO BYTE READ

For a two byte read only 8 data outputs D7 . . D0/8 are used Conversion start procedure and data output status for the first read operation is identical to Slow Memory Mode, Parallel Read See Figure 18 timing diagram and Table II data bus status. At the end of conversion the low data byte (DB7 . . . DBO) is read from the ADC. A second READ opcration with HBEN high, places the high byte on data outputs D3/11 . . D0/8 and disables conversion start. Note the 4MSB's appear on data outputs D11 . . D8 during the two READ operations above

AD7572

Figure 17. Slow Memory Mode, Parallel Read Timing Diagram

AD7572 Data Outpu13	D11	D10	D9	D8	D7	D6	D5	D4	D3111	D210	D1/9	D038
Read	DB11	DB10	DB9	D88	D87	DB6	DB5	DB4	DB3	DB2	DB1	DB0

Table I. Slow Memory Mode, Parallel Read Data Bus Status

Figure 18. Slow Memory Mode, Two Byte Read Timing Diagram

AD7572 Data Outputs	D7	D6	DS	D4	D311	D2/10	D19	D0/8
First Read	DB7	DB6	DBS	DB4	DB3	DB2	DB1	DB0
Second Read	LOW	LOW	LOW	LOW	DB11	DB10	D89	DB8

Table II. Slow Memory Mode, Two Byte Read Data Bus Status

Figure 19. ROM Mode, Parallel Read Timing Diagram

AD7572 Data Outputs	D11	D10	D9	D8	D7	D6	D5	D4	D3111	D2/10	D1/9	D018
First Read(Old Data)	DB11	DB10	D89	DB8	D87	DB6	DB5	DB4	D83	DB2	DB1	DB0
Second Read	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	D80

Table III. ROM Mode, Parallel Read Data Bus Status

ROM MODE, PARALLEL READ (HBEN = LOW)

The ROM Mode avoids placing a microprocessor into a wait state. A conversion is started with a READ operation and the 12-bits of data from the previous conversion is available on data outputs Dll . . . D0/8 (see Figure 19 and Table III). This data may be disregarded if not required. A second READ operation reads the new data (DB1I . . DB0) and starts another conversion. A delay at least as long as the AD7572 conversion time must be allowed between READ operations.

ROM MODE, TWO BYTE READ

As previously mentioned for a two byte read, only data outputs D7 . . DO/8 arc used. Conversion is started in the normal way with a READ operation and the data output status is the same as the ROM Mode, Parallel Read. See Figure 20 timing diagram and Table IV data bus status. Two more READ operations are required to access the new conversion result. A delay equal to the AD7572 conversion time must be allowed between conversion start and the second data READ operation. The second READ operation, with HREN high, disables conversion start and places the high byte (4MSBs) on data outputs D3/11 . . D0/8. A third READ operation accesses the low data byte (DB7 . . DB0) and starts another conversion. The 4MSB's appear on data outputs D11 . . . D8 during all three read operations above.

MICROPROCESSOR INTERFACING

The AD7572 is designed to interface with microprocessors as a memory mapped device. The $\overline{C S}$ and $\overline{R D}$ control inputs are common to all peripheral memory interfacing. The HBEN input serves as a dara byte select for 8 -bit processors and is normally connected to the microprocessor address bus.

MC68000 Microprocessor

Figure 21 shows a typical interface for the 68000 . The AD7572 is operating in the Slow Memory Mode. Assuming the AD7572 is located at address C 000 , then the following single 16 -bit MOVE instruction both starts a conversion and reads the conversion result,

Move.W \$C000,DO
At the beginning of the instruction cycle when the ADC address is selected, $\overline{B U S Y}$ and $\overline{C S}$ assert $\overline{D T A C K}$, so that the 68000 is forced into a WAIT state. At the cnd of conversion BUSY returns high and the conversion result is placed in the DO register of the UP.

Figure 21. AD7572-MC68000 interface

AD7572

8085A, Z80 MICROPROCESSOR

Figure 22 shows an AD7572 interface for the 280 and 8085 A. The AD7572 is opcrating in the Slow Memory Mode and a two byte read is required. Nor shown in the figure is the 8 -bit latch required to demultiplex the 8085 A common address/data bus. A0 is used to assert HBEN, so that an even address (HBEN = LOW) to the AD7572 will start a conversion and read the low data byte. An odd address (HBEN $=$ HIGH) will read the high
data byte. This is accomplished with the single 16-bit LOAD data byte. This is a
instruction below. instruction below.

For the $8085 A$
For the Z 80

HLD (B000)

LD HL, (BOOO)
This is a two byte read instruction which loads the ADC data (address BOOO) into the HL register pair. During the first read operation, $\overline{\mathrm{BUSY}}$ forces the microprocessor to WAIT for the AD7572 conversion. No WAIT states are inserted during the second read operation when the microprocessor is reading the high data byte.

Figure 22. AD7572-8085A/280 interface

TMS32010 MICROCOMPUTER

Figure 23 shows an AD7572-TMS32010 interface. The AD7572 is operating in the ROM Mode. The interface is dexigned for a maximum TMS 32010 ctock frequency of 18 MHz but will typically work over the full TMS32010 clock frequency range.
The AD7572 is mapped at a port address. The following 1/O instruction starts a conversion and reads the previous conversion result into data memory.

$$
\text { INA,PA } \quad(P A=\text { PORTADDRESS })
$$

When conversion is complete, a second $1 / O$ instruction reads the up-to-date data into data memory and starts another conversion A delay at least as long as the $A D C$ conversion time must be allowed between I/O instructions.

Figure 23. AD7572 - TMS32010 interface

AD7572-AD585 SAMPLE-HOLD INTERFACE

Figure 24 shows an AD585 sample-hold amplifier driving the AIN input of the AD7572. The interface contains resistors R1, R2, R3 and R4 to allow a bipolar input signal range of ± 2.5 volis. The maximum sampling frequency is 125 kHz for the AD7572XX05 ($5 \mu \mathrm{~s}$ conversion) and 64.5 kHz for the AD7572XX12 ($12.5 \mu \mathrm{~s}$ conversion). This includes the sample-hold amplifier acquisition time ($3 \mu \mathrm{~s}$).
When an AD7572 conversion is initiated, the converter BUSY output goes low indicating conversion is in progress. The falling edge of this $\overline{B U S Y}$ outpul signal places the sample-hold amplifier into the HOLD mode "freezing" the input signal to the AD7572 When conversion is finished, the BUSY output returns HIGH allowing the sample-hold to track the input signal. To achicve the maximum sampling rate, the AD7572 output data must be read within $3 \mu s$ immediately after conversion while the samplehold amplifier is acquining the next sample.

Figure 24. AD7572 - AD585 Sample-and-Hold Interface

