ANALOG DEVICES

FEATURES

8-Bit Resolution
On-Chip 8×8 Dual-Port Memory
No Missed Codes Over Full Temperature Range
Interfaces Directly to Z80/8085/6800
CMOS, TTL Compatible Digital Inputs
Threo-State Data Drivers
Ratiometric Capability
Interleaved DMA Operation
Fast Conversion
A/D Process Totally Transparent to $\mu \mathrm{P}$ Low Cost

GENERAL DESCRIPTION

The AD7581 is a microprocessor compatible 8 bit, 8 channel, memory buffered, data-acquisition system on a monolithic CMOS chip. It consists of an 8 bit successive approximation A/D converter, an 8 channel multiplexer, 8×8 dual-port RAM, three-state DATA drivers (for interface), address latches and microprocessor compatible control logic. The device interfaces directly to $8080,8085, \mathbf{Z 8 0}, 6800$ and other microprocessor systems.
The successive approximation conversion takes place on a continuous, channel sequencing, basis using microprocessor control signals for the clock. Data is automatically transferred to its proper location in the 8×8 dual-port RAM at the end of each conversion. When under microprocessor control, a READ DATA operation is allowed at any time for any channe since on-chip logic provides interleaved DMA. The facility to latch the address inputs ($\mathrm{A}_{0}-\mathrm{A}_{2}$) with ALE enables the AD7581 to interface with $\mu \mathrm{P}$ systems which feature either shared or separate address and data buses.

REV. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

AD7581 - SPECIFICATIONS

DC SPECIFICATIONS $\left(v_{D 0}=+5 V, V_{\text {ReF }}=-10 V\right.$, Unipolar Operation, unless otherwise stated.)

NOTES
${ }^{1}$ Temperature range as follows: $\mathrm{JN}, \mathrm{KN}, \mathrm{LN}\left(0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$; $\mathrm{AQ}, \mathrm{BQ}, \mathrm{CQ}\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.
${ }^{2}$ Typical offset temperature coefficient is $\pm 150 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
ches causes transfer function rotation about positive full scale. The effect is an offset and a gain term when using the circuits
ypical value, not guarant
Guaranteed but not tested.
${ }^{6}$ Typical change in $\mathrm{B}_{\text {OFs }}$ gain from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ is ± 2 LSBs.
Specifications subject to change without notice.

AD7581

GENERAL CIRCUIT INFORMATION

BASIC CIRCUIT DESCRIPTION

The AD7581 accepts eight analog inputs and sequentially converts each input into an eight-bit binary word using the successive approximation technique. The conversion results are stored in an 8×8 bit dual-port RAM. The device runs either directly from the microprocessor clock (in 6800 type systems) or from some suitable signal (e.g. ALE in 8085 type systems). Most applications require only a -10 V reference and a +5 V supply. Start-up logic is included on the device to establish the correct sequences on power-up. A maximum of 800 clock pulses are required for this period. Figure 1 shows the AD7581 functional diagram.

Figure 1. AD7581 Functional Diagram
Conversion of a single channel requires 80 input clock periods and a complete scan through all channels requires 640 input clock periods. When a channel conversion is complete, the successive approximation register contents are loaded into the proper channel location of the 8×8 RAM. At this time a status signal output, $\overline{\text { STAT }}$ (pin 12), gives a short negative going pulse (8 clock periods). This negative going STAT pulse is extended to 72 clock periods when channel 1 conversion is complete. An external pulse-width detector connected to the status pin can be used to derive conversion-related timing signals for microprocessor interrupts (see Channel Identification opposite page). Simultaneous with STAT going low, the MUX address is decremented. Eight clock periods later the next conversion is started.

Automatic interleaved DMA is provided by on-chip logic to ensure that memory updates take place at instants when the microprocessor is not addressing memory. Memory locations are addressed by $\mathbf{A}_{0}, \mathbf{A}_{1}$ and \mathbf{A}_{2}. This address may be latched by ALE for systems which feature a multiplexed address/data bus or alternatively, for systems which have separate address and data buses, the address latches can be made transparent by tying ALE (pin 16) HIGH. CS (pin 13) activates three-state buffers to place addressed data on the $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ data output pins.

A/D CIRCUIT DETAILS

In the successive approximation technique, successive bits, starting with the most significant bit (DB_{7}), are applied to the input of the D/A converter. The DAC output is then compared to the unknown analog input voltage, $\mathrm{A}_{\mathrm{IN}}(\mathrm{n})$, using a comparator. If the DAC output is greater than $A_{I N}(n)$, the data latch for the trial bit is reset to zero, and the next smaller data bit is tried. If the DAC output is less than $A_{I N}(n)$, the trial data bit stays in the " 1 " state, and the next smaller data bit is tried. Each successive bit is tried, compared to $A_{\text {IN }}(n)$, and set or reset in this manner until the least significant bit (DB_{0}) decision is made. The successive approximation register now contains a valid digital representation of $A_{I N}(n) . A_{I N}(n)$ is assumed to be stable during conversion.
The current weighting D/A converter is a precision multiplying DAC. Figure 2 shows the functional diagram of the DAC as used in the AD7581. It consists of a precision Silicon Chromium thin film R/2R ladder network and 8 N-channel MOSFET switches operated in single-pole-double-throw.
The currents in each 2 R shunt arm are binarily weighted i.e., the current in the MSB arm is $V_{\text {REF }}$ divided by 2R, in the second arm is $V_{\text {REF }}$ divided by $4 R$, etc. Depending on the D/A logic input (A/D output) from the successive approximation register, the current in the individual shunt arms is steered either to $\mathrm{A}_{\mathrm{GND}}$ or to the comparator summing point.

Figure 2. D/A Converter as Used in AD7581

AD7581

AC SPECIFICATIONS $\left(\mathrm{N}_{00}=+5 v, \mathrm{~V}_{\mathrm{nEF}}=-10 V\right.$, Unipolar Operation, unless othemise stated.)

| Symbol | Specification | Typical at
 $+25^{\circ} \mathbf{C}$ | Limit Over
 Temperature | Units | Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ABSOLUTE MAXIMUMRATINGS

$V_{\text {DD }}$ to AGND	
$V_{\text {DD }}$ to DGND	7
AGND to DGND	
Digital Input Voltage to DGND (Pins 13, 16-19)	
Digital Output Voltage to DGND	
CLK (Pin 15) Input Voltage to DGND	$-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {Ref }}(\operatorname{Pin} 10)$ to AGND	$\pm 25 \mathrm{~V}$
$\mathrm{V}_{\text {bofs }}(\operatorname{Pin} 1)$ to AGND	$\pm 17 \mathrm{~V}$
AIN (0-7)(Pin 9-2)	± 17
Operating Temperature Range	
Commercial (J, K, L Versions)	0 to $+70^{\circ} \mathrm{C}$
Industrial (A, B, C Versions)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10secs)	$+300^{\circ}$
Power Dissipation (Any Package)	
to $+75^{\circ} \mathrm{C}$	1,000m
Derate above $+75^{\circ} \mathrm{C}$ by	10 m

PIN CONFIGURATION

CAUTION
ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

ORDERING GUIDE

Model	Temperature Range	Differential Nonlinearity (LSB)	Package Option
AD7581JN	0 to $+70^{\circ} \mathrm{C}$	$\pm 17 / 8$ max	$\mathrm{N}-28$
AD7581KN	0 to $+70^{\circ} \mathrm{C}$	$\pm 7 / 8$ max	$\mathrm{N}-28$
AD7581LN	0 to $+70^{\circ} \mathrm{C}$	$\pm 3 / 4$ max	$\mathrm{N}-28$
AD7581AQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 17 / 8$ max	$\mathrm{Q}-28$
AD7581BQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 7 / 8$ max	$\mathrm{Q}-28$
AD7581CQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 3 / 4 \max$	$\mathrm{Q}-28$

NOTE

${ }^{*} \mathrm{~N}=$ Plastic DIP; $\mathrm{Q}=$ Cerdip. For outline information see Package Information section.

AD7581

TIMING AND CONTROL OF THE AD7581

CHANNEL SELECTION

Table I shows the truth table for the address inputs. The input address is latched when ALE goes LOW. When ALE is HIGH the address input latch is transparent.

A2	A1	A0	ALE	Channel Data To Be Read
$\mathbf{0}$	0	0	1	Channel 0
$\mathbf{0}$	0	1	1	Channel 1
0	1	0	1	Channel 2
0	1	1	1	Channel 3
$\mathbf{1}$	0	0	1	Channel 4
$\mathbf{1}$	0	1	1	Channel 5
$\mathbf{1}$	$\mathbf{1}$	0	1	Channel 6
1	$\mathbf{1}$	$\mathbf{1}$	1	Channel 7

Table I. Channel Selection Truth Table

TIMING AND CONTROL

A typical timing diagram is shown in Figure 3. When $\overline{\mathrm{CS}}$ is HIGH, the three-state data drivers are in the high-impedance state. When $\widetilde{\mathrm{CS}}$ goes LOW the data drivers switch to the lowimpedance state (i.e., low impedance to DGND or to $V_{D D}$). Output data is valid after time $\mathrm{t}_{\mathrm{ACC}}$.

Figure 3. Timing Diagram for the AD7581

SWITCHING TERMINOLOGY

t_{H} : ALE pulse width requirement.
$\mathrm{t}_{\text {ALH }}$:Address Valid to latch hold time.
$t_{\text {ALS }}$: Address Valid to latch set-up time.
$t_{\text {LCS }}$: Address latch to Chip Select set-up time
${ }^{t_{C W}}$: Chip Select pulse width requirement.
$\mathrm{t}_{\mathrm{ACC}}$: Chip Select to valid data propagation delay.
$t_{\text {CF }}$: Chip Select to output data float propagation delay.
$t_{\text {CLZ }}$: Chip Select to low impedance data bus.

CHANNEL IDENTIFICATION

In some real-time applications, it may be necessary to provide an interrupt signal when a particular channel receives updated data. To achieve this, it is necessary to identify which channel is currently under conversion. The STAT output provides an
identifying signal by staying low for an additional 64 clock periods over normal (8 clock periods) when channel 0 is active This is illustrated in Figure 4. Memory update takes place on a rising edge of a clock pulse and is completed in 200 ns . This occurs 6 clock periods before STAT goes low.

for channel 0

Figure 4. $\overline{S T A T}$ Output for Channel Identification

One simple circuit using the $\overline{\text { STAT }}$ output is shown in Figure 5. The time constant RC is chosen such that X_{2} ignores the normal STAT low pulse width (8 clock periods wide) but respond to the much wider STAT low pulse width (72 clock periods wide) occurring during channel 0 conversion. Typically for a 1μ s clock period $\mathrm{C}=0.022 \mu \mathrm{~F}, \mathrm{R}=1.8 \mathrm{k} \Omega$.

Figure 5. Hardware Channel Identification
Another possibility is to use the microprocessor to interrogat the STAT output and hence determine channel identity. A simple routine is shown in Figure 6.

Figure 6. Software Channel Identification

AD7581

OPERATING THE AD7581

UNIPOLAR BINARY OPERATION
Figures 7a and 7b show the analog circuit connections and typical transfer characteristic for unipolar operation (0 V to +10 V). An AD584 is used for the -10 V reference. Calibration is as follows (device clocked i.e., continuous conversions); OFFSET:
Comparator offset is trimmed out via the bipolar offset pin BoFs. R10, R11 and R12 comprise a simple voltage tap buffered by A1 and feeding into BoFs

1. Since comparator offset will be the same regardless of which channel is active, take A_{0}, A_{1} and A_{2} LOW and and exercise ALE to latch the address.
2. With AIN $0=19.5 \mathrm{mV}(1 / 2 \mathrm{LSB})$ adjust R11, i.e., the offset voltage on $\mathrm{B}_{\mathrm{OFS}}$, until $\mathrm{DB}_{7}-\mathrm{DB}_{1}$ are LOW and DB_{0} (LSB) flickers.

Figure 7a. AD7581 Unipolar (OV to +10 V) Operation (Output Code is Straight Binary)

GAIN (FULL SCALE)

In many applications gain adjustment is not required thus removing the need for trimmers in the analog channels. For channels requiring gain trim, the following procedure is recommended. Offset adjustment must be performed before gain adjustment.

1. Apply +9.941 V (FS $-3 / 2 \mathrm{LSB}$) to all input channels AIN (0-7).
2. Select required channel n via $\mathbf{A}_{0}, \mathbf{A}_{1}, \mathbf{A}_{2}$ and latch the Address using ALE.
3. Adjust trimmer RN of selected channnel until $\mathrm{DB}_{7}-\mathrm{DB}_{1}$ are HIGH and the LSB (DB_{0}) flickers.
4. Select next channel requiring gain trim and repeat steps 2 and 3.

tage, volts (referred to analog ground OTE: APPROXIMATE BIT WEIGHTS ARE SHOWIN FOR ILLUSTRATION
BIT WEIGHT FOR A -IOV REFERENCE IS $\approx 39.1 \mathrm{mV}$.

Figure 7b. Transfer Characteristic for Unipolar Circuit of Figure 7a

UNIPOLAR (COMPLEMENTARY BINARY) OPERATION

Figures 8a and 8b show the analog circuit connections and typical transfer characteristic for unipolar (complementary binary) operation
Calibration is as follows (continuous conversions);

OFFSET:

Comparator offset is trimmed out via the bipolar offset pin BoFs. R10, R11 and R12 comprise a simple voltage tap buffered by A1 and feeding into $\mathrm{B}_{\mathrm{OFS}}$.

1. Since comparator offset will be the same regardless of which channel is active, take A_{0}, A_{1} and A_{2} LOW and exercise ALE to latch the address.
2. With AIN $0=-9.98 \mathrm{~V}(-\mathrm{FS}+1 / 2 \mathrm{LSB})$ adjust R11, i.e., the offset voltage on $\mathrm{B}_{\mathrm{OFS}}$, until $\mathrm{DB}_{7}-\mathrm{DB}_{1}$ are LOW and the LSB (DB_{0}) flickers.

Figure 8a. AD7581 (OV to -10V) Operation (Output Code is Complementary Binary)

AD7581

GAIN (FULL SCALE)

In many applications gain adjustment is not required thus removing the need for trimmers in the analog channels. For channels requiring gain trim, the following procedure is recommended. Offset adjustment must be performed before gain adjustment.

1) Apply -58.6 mV ($3 / 2 \mathrm{LSB}$) to all input channels AIN ($0-7$). 2) Select required channel n via A_{0}, A_{1}, A_{2} and exercise ALE to latch the address.
2) Adjust trimmer RN of selected channel until $\mathrm{DB}_{7}-\mathrm{DB} 1$ are HIGH and the LSB (DB_{0}) flickers.
3) Select next channel requiring gain trim and repeat step 2 and 3.

Figure 8b. Transfer Characteristic for Unipolar Circuit of Figure 8a

BIPOLAR (OFFSET BINARY) OPERATION

Figures 9a and 9b illustrate the analog circuitry and transfer characteristic for $\pm 5 \mathrm{~V}$ bipolar operation. Output coding is off set binary. Comparator offset correction is again applied to the $B_{\text {OFS }}$ pin.
Calibration is as follows (continuous conversions);

OFFSET:

1. Apply $-4.980 \mathrm{~V}(-\mathrm{FS} / 2+1 / 2 \mathrm{LSB})$ to all input channels AIN (0-7).
2. Trim R11 of the comparator offset circuit until $\mathrm{DB}_{7}-\mathrm{DB}_{1}$ are LOW and the LSB $\left(\mathrm{DB}_{0}\right)$ flickers.

GAIN (FULL SCALE)

1. Apply $+4.941 \mathrm{~V}(+\mathrm{FS} / 2-3 / 2 \mathrm{LSB})$ to all input channels, $\mathrm{A}_{\text {IN }}(0-7)$
2. Select required channel n via $\mathbf{A}_{0}, \mathbf{A}_{1}, \mathbf{A}_{2}$, and latch the address using ALE.
3. Adjust trimmer RN 'of selected channel until $\mathrm{DB}_{7}-\mathrm{DB}_{1}$ are HIGH and the LSB (DB 0) flickers.
4. Select next channel requiring gain trim and repeat steps 2 and 3.
5. Apply -19.5 mV to each gain-trimmed channel. If the ADC output code does not flicker between 01111111 and 10000000 repeat the calibration procedure.

Figure 9a. AD7581 Bipolar (-5 V to +5 V) Operation (Output Code is Offset Binary)

Figure 9b. Transfer Characteristic Around Major Carry for Bipolar Circuit of Figure 9a

AD7581

INTERFACING THE AD7581

Figure 10. AD7581/6800 Interface
NOTES:

1. ANALOG AND DIGITAL GROUND

It is recommended that $A_{G N D}$ and $D_{G N D}$ be connected locally to prevent the possibility of injecting noise into the AD7581. In systems where the $\mathrm{A}_{\mathrm{GND}}-\mathrm{D}_{\mathrm{GND}}$ intertie is not local, connect back-to-back diodes (1 N 914 or equivalent) between the $A D 7581 \mathrm{~A}_{\mathrm{GND}}$ and $\mathrm{D}_{\mathrm{GND}}$ pins.

Figure 11. AD7581/8085 interface
2. LOGIC DEGLITCHING IN μ P APPLICATIONS Unspecified states on the address bus (due to different rise and fall times on the address bus) can cause glitches at the AD7581 $\overline{\mathrm{CS}}$ terminal. These glitches can cause unwanted reads. The best way to avoid glitches is to gate the address decoding logic, e.g., with RD (8080), $\overline{\mathrm{RD}}$ (8085) or VMA (6800).

MECHANICAL INFORMATION
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm)
28-PIN CERAMIC DIP (D-28)

