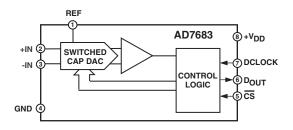


16-BIT ADC in µS08

Preliminary Technical Data

AD7683

FEATURES


16 Bits No Missing Codes (B Grade) INL: \pm 1LSB Typ, \pm 3LSB Max (B Grade) Pseudo-Differential Analog input range: 0V to V_{REF} with V_{REF} up to VDD No Pipeline Delay Single Supply Operation 5V and 2.7V

Serial Interface SPI/QSPI/μWire/DSP compatible Power Dissipation : 4.5 mW Typ @ 3V/100ksps, 0.45 mW @ 10 kSPS

Stand-by current (acquisition phase): 1 μA Max μ -SO8 Package Improved 2nd Source to ADS8320 and ADS8325

Battery Powered Equipment
Data Acquisition
Instrumentation
Medical Instruments
Process Control

FUNCTIONAL BLOCK DIAGRAM

μSO/SOT23 16 Bit ADC

Type / kSPS	100 kSPS	250 kSPS	380 - 550 kSPS
True	<u>AD7684</u>	<u>AD7687</u>	<u>AD7688</u>
Differential			
Pseudo	AD7683	AD7685	<u>AD7686</u>
Differential			
Unipolar	<u>AD7680</u>		

GENERAL DESCRIPTION

The AD7683 is a 16-bit charge redistribution successive-approximation, Analog-to-Digital Converter which operates from a single power supply from 2.7V to 5.5V. It contains a high-speed 16-Bit sampling ADC without any missing codes and a flexible serial interface port. The part also contains a low noise, wide bandwidth, very short aperture delay track/hold circuit which can sample an analog input range from 0V to REF. The reference voltage REF is applied externally and can be set up to the supply voltage.

The AD7683 is fabricated using a CMOS process and is housed in an 8-lead μ SOIC package with operation specified from -40°C to +85°C.

PRODUCT HIGHLIGHTS

1. Superior INL and DNL

The AD7683 has a maximum integral non linearity error of 3 LSBs and 1 LSB typical with no missing 16-bit code.

- 2. 2.7V or 5V Single Supply Operation The AD7683 operates from a single supply. Its power dissipation decreases with the throughput rate (for instance, 450 μW at 10 kHz data rate). It consumes 1 μA maximum during the acquisition phase.
- 3. Serial Interface compatible with SPI and DSP host.

REV. Pr E

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 World Wide Web Site: http://www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2003

AD7683—SPECIFICATIONS

(T_A = -40°C to +85°C, V_{REF} = V_{DD}, V_{DD} = 2.7V to 5.5 V, 100 kSPS unless otherwise noted.)

	AD7683 All Grades				
Parameter	Conditions	Min	Тур	Max	Unit
RESOLUTION		16			Bits
ANALOG INPUT Voltage Range Absolute Input Voltage Analog Input CMRR Leakage Current at 25 °C Input Impedance	+IN+ - (-IN) IN+ IN- f _{IN} = TBD kHz 100kSPS Throughput	0 -0.3 -0.3	TBD TBD See Analog Input Section	V_{REF} $V_{DD} + 0.3$ 0.5	V V V dB nA
THROUGHPUT SPEED Complete Cycle Throughput Rate DCLOCK Frequency		0 0		10 100 2.9	μs kSPS MHz
REFERENCE External Reference Voltage Range External Reference Current Drain	100kSPS Throughput	0.5	TBD	V_{DD} + 0.3	V μ A
DIGITAL INPUTS Logic Levels V _{IH} V _{IL} I _{IH} I _{IL} Input Capacitance		+2.0 -0.3 -1 -1	5	$V_{\rm DD} + 0.3 + 0.8 + 1 + 1$	V V μ Α μ Α p F
$\begin{array}{ccc} \overline{DIGITAL} & OUTPUTS \\ Data & Format \\ V_{OH} \\ V_{OL} \end{array}$	I _{SOURCE} = -500 μA I _{SINK} = 500 μA	Se V _{DD} -	rial 16-Bits Straight Bina	0.4	V V
POWER SUPPLIES V _{DD} Operating Current V _{DD} Power Dissipation ¹	Specified Performance 100 kSPS Throughput $V_{\rm DD} = 5V$ $V_{\rm DD} = 3V$ During acquisition phase $V_{\rm DD} = 5V$, 100 kSPS Throughput $V_{\rm DD} = 5V$, 10 kSPS Throughput $V_{\rm DD} = 3V$, 10 kSPS Throughput $V_{\rm DD} = 3V$, 10 kSPS Throughput	2.7	TBD TBD TBD TBD TBD 450	5.5 1000 TBD TBD TBD	V m A m A n A m W m W
Power-Down Power ¹ TEMPERATURE RANGE ² Specified Performance	T_{MIN} to T_{MAX}	-40	TBD	+85	n W ° C

NOTES

Specifications subject to change without notice.

 $^{^{1}}$ With all digital inputs forced to V_{DD} or GND respectively.

²Contact factory for extended temperature range.

³LSB means Least Significant Bit. With the 5 V input range, one LSB is 76.3 µV. With the 2.5 V input range, one LSB is 38.15 µV.

⁴See Definition of Specifications section. These specifications do not include the error contribution from the external reference.

⁵All specifications in dB are referred to a full-scale input FS. Tested with an input signal at 0.5 dB below full-scale unless otherwise specified.

$V_{DD} = 5 V$

(T_A = -40°C to +85°C, $V_{REF} = 5 V,\, 100$ kSPS unless otherwise noted.)

		AD7683A			AD7683B				
Parameter	Conditions	Min	Typ	Max	Min	Typ	Max	Unit	
DC ACCURACY									
No Missing Codes		15			16			Bits	
Integral Linearity Error		-6	± 3	+ 6	- 3	± 1	+ 3	LSB ³	
Offset Error ⁴			$\pm TBD$	± T B D		$\pm TBD$	± T B D	LSB	
Offset Temperature Drift			±ΤΒD			±ΤΒD		ppm/°C	
Gain Error ⁴	REF = 5 V			±ΤΒD			±ΤΒD	% of FSR	
Gain Error			±TBD			±TBD		ppm/°C	
Temperature Drift									
Transition Noise			0.7			0.65		LSB	
Power Supply Sensitivity	$V_{DD} = 5 \text{ V} \pm 5\%$		± T B D			± T B D		LSB	
AC ACCURACY									
Signal-to-Noise	$f_{IN} = 1 \text{ kHz}$		90		88	91		dB ⁵	
SFDR	$f_{IN} = 1 \text{ kHz}$		100			108		d B	
THD	$f_{IN} = 1 \text{ kHz}$		-100			-106		d B	
S/[N+D]	$f_{IN} = 1 \text{ kHz}$		90		88	91		d B	
	$f_{IN} = 1 \text{ kHz},$								
	-60 dB Input		30			3 1		d B	
Effective Number of Bits	$f_{IN} = 1 \text{ kHz}$		14.7			14.8		Bits	
-3 dB Input Bandwidth			9			9		MHz	
Full-Power Bandwidth	f_{IN} , SINAD at -3dB		TBD			TBD		kHz	

$V_{DD} = 2.7 V$

$(T_A = -40$ °C to +85°C, $V_{REF} = 2.5V$, 100 kSPS unless otherwise noted.)

		AD7683A		AD7683B				
Parameter	Conditions	Min	Typ	Max	Min	Typ	Max	Unit
DC ACCURACY								
No Missing Codes		15			16			Bits
Integral Linearity Error		-6	± 3	+ 6	-3	± 1	+ 3	LSB ³
Offset Error ⁴			$\pm TBD$	±ΤΒD		±ΤΒD	±ΤΒD	LSB
Offset Temperature Drift			± T B D			±ΤΒD		ppm/°C
Gain Error ⁴	REF = 5 V			± TBD			±ΤΒD	% of FSR
Gain Error			±ΤΒD			±TBD		ppm/°C
Temperature Drift								
Transition Noise			0.7			0.65		LSB
Power Supply Sensitivity	$V_{DD} = 5 \text{ V} \pm 5\%$		±TBD			± T B D		LSB
AC ACCURACY								
Signal-to-Noise	$f_{IN} = 1 \text{ kHz}$		85			86		dB ⁵
SFDR	$f_{IN} = 1 \text{ kHz}$		96			100		d B
THD	$f_{IN} = 1 \text{ kHz}$		-94			-98		d B
S/[N+D]	$f_{IN} = 1 \text{ kHz}$		85			86		d B
	$f_{IN} = 1 \text{ kHz},$							
	−60 dB Input		25			26		d B
Effective Number of Bits	$f_{IN} = 1 \text{ kHz}$		13.8			14		Bits
-3 dB Input Bandwidth			9			9		MHz
Full-Power Bandwidth	f _{IN} , SINAD at -3dB		TBD			TBD		kHz

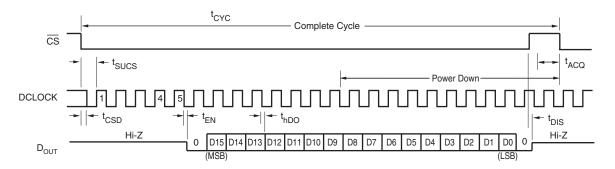
NOTES

 $^{^{1}}$ With all digital inputs forced to V_{DD} or GND respectively.

²Contact factory for extended temperature range.

³LSB means Least Significant Bit. With the 5 V input range, one LSB is 76.3 µV. With the 2.5 V input range, one LSB is 38.15 µV.

⁴See Definition of Specifications section. These specifications do not include the error contribution from the external reference.


⁵All specifications in dB are referred to a full-scale input FS. Tested with an input signal at 0.5 dB below full-scale unless otherwise specified.

AD7683—SPECIFICATIONS

TIMING SPECIFICATIONS (-40° C to $+85^{\circ}$ C, V_{DD} = 2.7 V to 5.5V, unless otherwise stated)

	Symbol	Min	Тур	Max	Unit
Refer to Figure 3					
Throughput rate	t _{CYC}			100	kHz
CS Falling to DCLOCK Low	t _{CSD}			0	ns
CS Falling to DCLOCK Rising	t _{SUCS}	20			ns
DCLOCK Falling to Data remains Valid	$t_{ m hDO}$	5	TBD		ns
$\overline{\text{CS}}$ Rising edge to D_{OUT} HiZ	t _{DIS}		TBD	100	ns
DCLOCK Falling to Data Valid	t _{EN}		TBD	50	ns
Acquisition Time	t_{ACQ}	400			ns
D _{OUT} Fall Time	t_{F}		TBD	25	ns
D _{OUT} Rise Time	t _R		TBD	25	ns

Specifications subject to change without notice.

NOTE: A minimum of 22 clock cycles are required for 16-bit conversion. Shown are 24 clock cycles. $D_{\mbox{OUT}}$ goes low on the DCLOCK falling edge following the LSB reading.

Figure 3. Serial Interface Timing.

REV. Pr E __4_

AD7683

ABSOLUTE MAXIMUM RATINGS1

Analog Inputs

 $+\text{IN}^2$, $-\text{IN}^2$, REF, GND -0.3 V to V_{DD} + 0.3 V

Supply Voltages V_{DD} to GND -0.3 V to 6 V

Digital Inputs to GND -0.3 V to V_{DD} + 0.3 V

Digital Outputs to GND-0.3 V to V_{DD} + 0.3 V

Internal Power Dissipation ³	325 mW
Junction Temperature	
Storage Temperature Range	65°C to +150°C
Lead Temperature Range	
(Soldering 10 sec)	300°C
Storage Temperature Range Lead Temperature Range	65°C to +150°C

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING GUIDE

Model	Maximum INL	No Missing Code	Temperature Range	Package Description	Package Option	Brand
AD7683ARM AD7683ARMRL7 AD7683BRM AD7683BRMRL7 EVAL-AD7683CB ¹ EVAL-CONTROL EVAL-CONTROL BRD2 ² EVAL-CONTROL BRD3 ²	±6 LSB ±6 LSB ±3 LSB ±3 LSB	15bits 15bits 16bits 16bits	-40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C	μSOIC-8 μSOIC-8	oard	C1L C1L C1C C1C

NOTES

²These boards allow a PC to control and communicate with all Analog Devices evaluation boards ending in the CB designators.

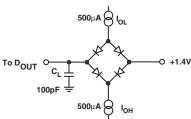


Figure 1. Load Circuit for Digital Interface Timing.

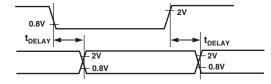


Figure 2. Voltage Reference Levels for Timing.

Figure 3. D_{OUT} rise and fall timing.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD7683 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

²See Analog Input section.

³Specification is for device in free air: μ SOIC-8: $\theta_{JA} = 200^{\circ}$ C/W.

¹This board can be used as a standalone evaluation board or in conjunction with the EVAL-CONTROL BRDx for evaluation/demonstration purposes.

AD7683

PIN FUNCTION DESCRIPTIONS

Pin #	Mnemonic		Function
1	REF	ΑI	Reference Input Voltage. The REF range is from TBD to VDD. It is referred to the GND ground. This pin should be decoupled closely to the pin with a TBD µFcapacitor.
2	+ I N	ΑI	Analog Input. It is referred to -IN. The voltage difference between +IN and -IN range is $0V$ to $V_{\rm RFF}$.
3	-I N	ΑI	Sense Analog Input Ground. To be connected to the analog ground plane or to a remote sense ground.
4	$\frac{G N D}{C S}$	P	Power Supply Ground.
5	$\overline{\mathtt{C}}\overline{\mathtt{S}}$	DΙ	Chip Select Input. This input has multiple functions. It initiates a complete conversion process on its falling edge. The part returns in shutdown mode as soon as the conversion is done. It also enables D_{OUT} . When high, D_{OUT} is high impedance.
6	$\mathrm{D}_{\mathrm{OUT}}$	DΟ	Serial Data Output.
7	DCLOCK	DΙ	Serial Data Clock Input. It synchronizes the serial data transfer.
8	V_{DD}	P	Power Supply.

NOTES
AI = Analog Input
DI = Digital Input
DO = Digital Output
DO = Digital Output

P = Power

REV. Pr E -6-

AD7683

DEFINITION OF SPECIFICATIONS

INTEGRAL NONLINEARITY ERROR (INL)

Linearity error refers to the deviation of each individual code from a line drawn from "negative full scale" through "positive full scale". The point used as "negative full scale" occurs 1/2 LSB before the first code transition. "Positive full scale" is defined as a level 1 1/2 LSB beyond the last code transition. The deviation is measured from the middle of each code to the true straight line.

DIFFERENTIAL NONLINEARITY ERROR (DNL)

In an ideal ADC, code transitions are 1 LSB apart. Differential nonlinearity is the maximum deviation from this ideal value. It is often specified in terms of resolution for which no missing codes are guaranteed.

GAIN ERROR

The last transition (from 111...10 to 111...11) should occur for an analog voltage 1 1/2 LSB below the nominal full scale (4.999886 V for the 0 V to 5 V range). The gain error is the deviation of the actual level of the last transition from the ideal level after the offset has been adjusted out.

OFFSET ERROR

The first transition should occur at a level 1/2 LSB above analog ground (38.1 μ V for the 0 V to 5 V range). The offset error is the deviation of the actual transition from that point.

SPURIOUS FREE DYNAMIC RANGE (SFDR)

The difference, in decibels (dB), between the rms amplitude of the input signal and the peak spurious signal.

EFFECTIVE NUMBER OF BITS (ENOB)

ENOB is a measurement of the resolution with a sine wave input. It is related to S/(N+D) by the following formula:

ENOB =
$$(S/[N+D]_{dB} - 1.76)/6.02)$$

and is expressed in bits.

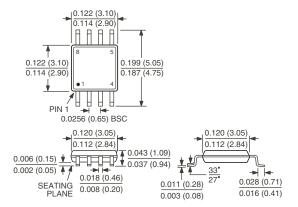
TOTAL HARMONIC DISTORTION (THD)

THD is the ratio of the rms sum of the first five harmonic components to the rms value of a full-scale input signal and is expressed in decibels.

SIGNAL-TO-NOISE RATIO (SNR)

SNR is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, excluding harmonics and dc. The value for SNR is expressed in decibels.

SIGNAL TO (NOISE + DISTORTION) RATIO (S/[N+D])


S/(N+D) is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for S/(N+D) is expressed in decibels

7 REV. Pr E

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Lead μSOIC (RM-8)

REV. Pr E __8_