Preliminary Technical Data

FEATURES
AD7790 Has 16-Bit Resolution
AD7791 Has 24-Bit Resolution
POWER
Specified for Single 3 V and 5 V Operation Normal: $65 \mu \mathrm{~A}$ typical
Power-Down: $1 \mu \mathrm{~A}$
RMS Noise: $1.5 \mu \mathrm{~V}$
AD7790: 16-Bit p-p Resolution @ 16.6 Hz
AD7791: 19-Bit p-p Resolution (21.5 Bits Effec-
tive Resolution) @ 16.6 Hz
Simultaneous 50 Hz and 60 Hz Rejection at 16.6
Hz Update Rate
Internal Clock Oscillator
Rail-to-Rail Input Buffer
VDD Monitor Channel
10-Lead μ SOIC Package
INTERFACE
3-Wire Serial
SPI ${ }^{\text {TM }}$, QSPI $^{\top M}$, MICROWIRE ${ }^{\text {TM }}$ and DSP-Compat-
ible
Schmitt Trigger on SCLK
APPLICATIONS
SMART Transmitters
Battery Applications

> Portable Instrumentation
> Sensor Measurement
> Temperature Measurement
> Pressure Measurements
> Weigh Scales
> 4 to 20 mA Loops

GENERAL DESCRIPTION

The AD7790/AD7791 are low-power, complete analog front ends for low frequency measurement applications. The AD7791 contains a 24 -bit $\Sigma-\Delta$ ADC with one differential input which can be buffered or unbuffered. The AD7790 is a 16 -bit version of the AD7791.

The device operates from an internal clock. Therefore, the user does not have to supply a clock source to the device. The output data rate from the part is software programmable. The p-p resolution from the part varies with the programmed output data rate.
The part operates from a single 3 V or 5 V supply. When operating from a 3 V supply, the power dissipation for the part is $195 \mu \mathrm{~W}$ typical. The AD7790/AD7791 is housed in a 10 -lead μ SOIC package.

FUNCTIONAL BLOCK DIAGRAM

SPI and QSPI are trademarks of Motorola Inc.
MICROWIRE is a trademark of National Semiconductor Corporation.

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106,U.S.A
Tel: 781/329-4700
Fax: 781/326-8703
© Analog Devices, Inc., 2002

Parameter	AD7791B	Units	Test Conditions/Comments
ADC CHANNEL SPECIFICATION Output Update Rate	$\begin{aligned} & 9.5 \\ & 120 \end{aligned}$	Hz min nom Hz max nom	
ADC CHANNEL No Missing Codes ${ }^{2}$ Resolution Output Noise Integral Nonlinearity ${ }^{2}$ Offset Error Offset Error Drift vs. Temperature Full-Scale Error ${ }^{3}$ Gain Drift vs. Temperature Power Supply Rejection	$\begin{aligned} & 24 \\ & 19 \\ & 1.5 \\ & \pm 15 \\ & \pm 3 \\ & \pm 10 \\ & \pm 10 \\ & \pm 0.5 \\ & 80 \end{aligned}$	Bits min Bits p-p $\mu \mathrm{V}$ RMS typ ppm of FSR Max $\mu \mathrm{V}$ typ $\mathrm{nV} /{ }^{\circ} \mathrm{C}$ typ $\mu \mathrm{V}$ typ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ dB min	Update Rate $\leq 20 \mathrm{~Hz}$ 16.6 Hz Update Rate $100 \mathrm{~dB} \text { typ, } \mathrm{AIN}=1 \mathrm{~V}$
ANALOG INPUTS Differential Input Voltage Ranges Absolute AIN Voltage Limits ${ }^{2}$ Analog Input Current Average Input Current ${ }^{2}$ Average Input Current Drift Absolute AIN Voltage Limits ${ }^{2}$ Analog Input Current Average Input Current Average Input Current Drift Normal Mode Rejection ${ }^{2}$ (a) $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ (a) 50 Hz (a) 60 Hz Common Mode Rejection (a) DC (a) $50 \mathrm{~Hz}, 60 \mathrm{~Hz}^{2}$	$\begin{aligned} & \pm \text { REFIN } \\ & \text { GND }+100 \mathrm{mV} \\ & \text { V } \mathrm{DD}-100 \mathrm{mV} \\ & \pm 1 \\ & \pm 5 \\ & \text { GND }-30 \mathrm{mV} \\ & \text { V }_{\mathrm{DD}}+30 \mathrm{mV} \\ & \pm 350 \\ & \pm 2 \\ & 70 \\ & 85 \\ & 85 \\ & 90 \\ & 100 \end{aligned}$	V nom V min V max $n A \max$ $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ typ V min $\mathrm{V} \max$ nA/V typ $\mathrm{pA} / \mathrm{V} /{ }^{\mathrm{O}} \mathrm{C}$ typ dB min $\mathrm{dB} \min$ dB min dB min dB min	REFIN = REFIN(+) - REFIN(-) Buffered Mode of Operation Buffered Mode of Operation Unbuffered Mode of Operation Unbuffered Mode of Operation. Input current varies with Input Voltage $\begin{aligned} & 50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[2: 0]=100^{4} \\ & 50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[2: 0]=101^{4} \\ & 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[2: 0]=011^{4} \\ & \mathrm{AIN}=1 \mathrm{~V} \\ & 100 \mathrm{~dB} \text { typ } \\ & 50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz} \end{aligned}$
REFERENCE INPUT REFIN Voltage Reference Voltage Range ${ }^{2}$ Absolute REFIN Voltage Limits ${ }^{2}$ Average Reference Input Current Average Reference Input Current Drift Normal Mode Rejection ${ }^{2}$ @ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ (a) 50 Hz (a) 60 Hz Common Mode Rejection (a) DC (a) $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	$\begin{aligned} & 2.5 \\ & 1 \\ & \mathrm{~V}_{\mathrm{DD}} \\ & \mathrm{GND}-30 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{DD}}+30 \mathrm{mV} \\ & 0.5 \\ & \pm 0.01 \\ & 70 \\ & 85 \\ & 85 \\ & \\ & 110 \\ & 110 \\ & \hline \end{aligned}$	V nom V min V max V min V max $\mu \mathrm{A} / \mathrm{V}$ typ nA $/ V /{ }^{\circ} \mathrm{C}$ typ dB min dB min dB min dB typ dB typ	$\text { REFIN }=\text { REFIN(+) - REFIN(-) }$ $\begin{aligned} & 50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[2: 0]=100^{4} \\ & 50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[2: 0]=101^{4} \\ & 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[2: 0]=011^{4} \\ & \mathrm{AIN}=1 \mathrm{~V} \\ & 50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz} \end{aligned}$

NOTES

${ }^{1}$ Temperature Range $-40{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design and/or characterization data on production release.
${ }^{3}$ Full-scale error applies to both positive and negative full-scale and applies at the factory calibration conditions.
${ }^{4} \mathrm{FS}[2: 0]$ are the three bits used in the Filter Register to select the Output Word Rate.
Specifications subject to change without notice.

Parameter	AD7790B	Units	Test Conditions/Comments
ADC CHANNEL SPECIFICATION Output Update Rate	$\begin{aligned} & 9.5 \\ & 120 \end{aligned}$	Hz min nom Hz max nom	
ADC CHANNEL No Missing Codes ${ }^{2}$ Resolution Output Noise Integral Nonlinearity ${ }^{2}$ Offset Error Offset Error Drift vs. Temperature Full-Scale Error ${ }^{3}$ Gain Drift vs. Temperature Power Supply Rejection	$\begin{aligned} & 16 \\ & 16 \\ & 1.5 \\ & \pm 15 \\ & \pm 3 \\ & \pm 10 \\ & \pm 10 \\ & \pm 0.5 \\ & 80 \end{aligned}$	Bits min Bits p-p $\mu \mathrm{V}$ RMS typ ppm of FSR Max $\mu \mathrm{V}$ typ $\mathrm{nV} /{ }^{\mathrm{O}} \mathrm{C}$ typ $\mu \mathrm{V}$ typ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ dB min	$\pm \mathrm{V}_{\text {REF }}$ Range, Update Rate $\leq 20 \mathrm{~Hz}$ 16.6 Hz Update Rate Input Range $= \pm 2.5 \mathrm{~V}, 100 \mathrm{~dB}$ typ
ANALOG INPUTS Differential Input Voltage Ranges Absolute AIN Voltage Limits ${ }^{2}$ Analog Input Current Average Input Current ${ }^{2}$ Average Input Current Drift Absolute AIN Voltage Limits ${ }^{2}$ Analog Input Current Average Input Current Average Input Current Drift Normal Mode Rejection ${ }^{2}$ (a) $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ (a) 50 Hz (a) 60 Hz Common Mode Rejection @ DC (a) $50 \mathrm{~Hz}, 60 \mathrm{~Hz}^{2}$	$\begin{aligned} & \pm \text { REFIN/GAIN } \\ & \text { GND }+100 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{DD}}-100 \mathrm{mV} \\ & \pm 1 \\ & \pm 5 \\ & \pm \mathrm{GND}-30 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{DD}}+30 \mathrm{mV} \\ & \pm 350 \\ & \pm 2 \\ & 70 \\ & 85 \\ & 85 \\ & 90 \\ & 100 \end{aligned}$	V nom V min V max nA max $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ typ V min V max nA/V typ $\mathrm{pA} / \mathrm{V} /{ }^{\mathrm{O}} \mathrm{C}$ typ dB min $d B \min$ $\mathrm{dB} \min$ $\mathrm{dB} \min$ $\mathrm{dB} \min$	$\text { REFIN }=\operatorname{REFIN}(+)-\operatorname{REFIN}(-)$ GAIN $=1,2,4$, or 8 Buffered Mode of Operation Buffered Mode of Operation Unbuffered Mode of Operation Unbuffered Mode of Operation. Input current varies with Input Voltage $\begin{aligned} & 50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[2: 0]=100^{4} \\ & 50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[2: 0]=101^{4} \\ & 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[2: 0]=011^{4} \\ & \text { Input Range }= \pm 2.5 \mathrm{~V}, \mathrm{AIN}=1 \mathrm{~V} \\ & 100 \mathrm{~dB} \text { typ } \\ & 50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz} \end{aligned}$
REFERENCE INPUT REFIN Voltage Reference Voltage Range ${ }^{2}$ Absolute REFIN Voltage Limits ${ }^{2}$ Average Reference Input Current Average Reference Input Current Drift Normal Mode Rejection ${ }^{2}$ (a) $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ (a) 50 Hz (a) 60 Hz Common Mode Rejection @ DC @ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	$\begin{aligned} & 2.5 \\ & 1 \\ & \mathrm{~V}_{\mathrm{DD}} \\ & \mathrm{GND}-30 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{DD}}+30 \mathrm{mV} \\ & 0.5 \\ & \pm 0.01 \\ & 70 \\ & 85 \\ & 85 \\ & 110 \\ & 110 \end{aligned}$	V nom V min V max V min V max $\mu \mathrm{A} / \mathrm{V}$ typ nA/V/ ${ }^{\circ} \mathrm{C}$ typ dB min $d B \min$ $d B \min$ dB typ dB typ	$\text { REFIN }=\text { REFIN }(+)-\operatorname{REFIN}(-)$ $\begin{aligned} & 50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[2: 0]=100^{4} \\ & 50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[2: 0]=101^{4} \\ & 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[2: 0]=011^{4} \\ & \text { Input Range }= \pm 2.5 \mathrm{~V}, \text { AIN }=1 \mathrm{~V} \\ & 50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz} \end{aligned}$

[^1]
AD7790/AD7791-SPECIFICATIONS¹

Parameter	$\begin{aligned} & \text { AD7790B/ } \\ & \text { AD7791B } \end{aligned}$	Units	Test Conditions/Comments
LOGIC INPUTS All Inputs Except SCLK ${ }^{2}$ $\mathrm{V}_{\text {INL }}$, Input Low Voltage $\mathrm{V}_{\text {INH }}$, Input High Voltage SCLK Only (Schmitt-Triggered Input) ${ }^{2}$ $\mathrm{V}_{\mathrm{T}(+)}$ $\mathrm{V}_{\mathrm{T}(-)}$ $\mathrm{V}_{\mathrm{T}(+)}-\mathrm{V}_{\mathrm{T}(-)}$ $\mathrm{V}_{\mathrm{T}(+)}$ $\mathrm{V}_{\mathrm{T}(-)}$ $\mathrm{V}_{\mathrm{T}(+)}-\mathrm{V}_{\mathrm{T}(-)}$ Input Currents Input Capacitance	$\begin{aligned} & 0.8 \\ & 0.4 \\ & 2.0 \\ & \\ & 1.4 / 2 \\ & 0.8 / 1.4 \\ & 0.3 / 0.85 \\ & 0.95 / 2 \\ & 0.4 / 1.1 \\ & 0.3 / 0.85 \\ & \pm 1 \\ & \text { TBD } \\ & 10 \end{aligned}$	$\mathrm{V} \max$ $\mathrm{V} \max$ $\mathrm{V} \min$ $\mathrm{V} \min / \mathrm{V} \max$ $\mu \mathrm{A}$ max $\mu \mathrm{A} \max$ pF typ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \\ & \text { All Digital Inputs } \end{aligned}$
LOGIC OUTPUTS V_{OH}, Output High Voltage ${ }^{2}$ $\mathrm{V}_{\text {OL }}$, Output Low Voltage ${ }^{2}$ V_{OH}, Output High Voltage ${ }^{2}$ $V_{\text {OL }}$, Output Low Voltage ${ }^{2}$ Floating-State Leakage Current Floating-State Output Capacitance Data Output Coding	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-0.6 \\ & 0.4 \\ & 4 \\ & 0.4 \\ & \pm 1 \\ & 10 \\ & \text { Offset Binary } \end{aligned}$	V min V max V min V max $\mu \mathrm{A} \max$ pF typ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{I}_{\text {SOURCE }}=100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\text {SOURCE }}=200 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=1.6 \mathrm{~mA} \end{aligned}$
CLOCK OSCILLATOR Clock Frequency Start-Up Time (at Power-On)	$\begin{aligned} & 32.768 \pm 2 \% \\ & 0.5 \\ & 1 \end{aligned}$	$\mathrm{kHz} \min /$ max ms typ ms max	
POWER REQUIREMENTS ${ }^{3}$ Power Supply Voltage $V_{D D}$ - GND Power Supply Currents $I_{D D}$ Current I_{DD} (power-down mode)	$\begin{aligned} & 2.7 / 3.6 \\ & 4.75 / 5.25 \\ & \\ & 65 \\ & 75 \\ & 90 \\ & 170 \\ & 1 \end{aligned}$	$\mathrm{V} \min / \max$ $\mathrm{V} \min / \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ nom $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ nom $V_{D D}=3 \mathrm{~V}$ nom, Unbuffered Mode $V_{D D}=5 \mathrm{~V}$ nom, Unbuffered Mode Unbuffered Operation Buffered Operation

NOTES

${ }^{1}$ Temperature Range $-40{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design and/or characterization data on production release.
${ }^{3}$ Digital inputs equal to V_{DD} or GND.
Specifications subject to change without notice.
 GND, Input Logic $0=0 \mathrm{~V}$, Input Logic $1=\mathrm{V}_{\text {DD }}$, unless otherwise noted)

Parameter	Limit at $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ (B Version)	Units	Conditions/Comments
t_{1}	30.5175	$\mu \mathrm{s}$ nom	Internal Clock Period
t_{4}	100	ns min	SCLK High Pulsewidth
t_{5}	100	ns min	SCLK Low Pulsewidth
Read Operation t_{2}	0	ns min	$\overline{\mathrm{CS}}$ Falling Edge to DOUT/ $\overline{\mathrm{RDY}}$ Active Time
	60	ns max	$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 5.25 V
	80	ns max	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V
$\mathrm{t}_{3}{ }^{4}$	0	ns min	SCLK Active Edge to Data Valid Delay ${ }^{3}$
	60	ns max	$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 5.25 V
	80	ns max	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V
$\mathrm{t}_{6}{ }^{5,6}$	10	$n \mathrm{~ns} \min$	Bus Relinquish Time after $\overline{\mathrm{CS}}$ Inactive Edge
	80	ns max	
t_{7}	100	ns max	SCLK Inactive Edge to $\overline{\mathrm{CS}}$ Inactive Edge
t_{9}	0	ns min	$\overline{\mathrm{CS}}$ Falling Edge to SCLK Active Edge Setup Time ${ }^{3}$
t_{10}	30	ns min	Data Valid to SCLK Edge Setup Time
t_{11}	25	ns min	$\underline{\text { Data }}$ Valid to SCLK Edge Hold Time
t_{12}	0	ns min	$\overline{\mathrm{CS}}$ Rising Edge to SCLK Edge Hold Time

NOTES
${ }^{1}$ Sample tested during initial release to ensure compliance. All input signals are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of 1.6 V . ${ }^{2}$ See Figures 2 and 3.
${ }^{3}$ SCLK active edge is falling edge of SCLK.
${ }^{4}$ These numbers are measured with the load circuit of Figure 1 and defined as the time required for the output to cross the V_{OL} or V_{OH} limits. 5 These numbers are derived from the measured time taken by the data output to change 0.5 V when loaded with the circuit of Figure 1 . The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the times quoted in the timing characteristics are the true bus relinquish times of the part and, as such, are independent of external bus loading capacitances.
${ }^{6} \overline{\mathrm{RDY}}$ returns high after a read of the ADC. In single conversion mode and continuous conversion mode, the same data can be read again, if required, while $\overline{\mathrm{RDY}}$ is high, although care should be taken to ensure that subsequent reads do not occur close to the next output update. In continuous read mode, the digital word can be read only once.

Figure 1. Load Circuit for Timing Characterization

AD7790/AD7791

ABSOLUTEMAXIMUMRATINGS*
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
V_{DD} to GND. \qquad -0.3 V to +7 V
Analog Input Voltage to GND....... -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ Reference Input Voltage to GND... -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ Total AIN/REFIN Current (Indefinite)................ 30 mA Digital Input Voltage to GND....... -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Output Voltage to GND..... -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range.............. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature........................ $150^{\circ} \mathrm{C}$
μ SOIC Package
θ_{JA} Thermal Impedance $206^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JC }}$ Thermal Impedance $44^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec) $300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature $220^{\circ} \mathrm{C}$

NOTES

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PINCONFIGURATION

ORDERINGGUIDE

Model	Temperature Range	Package Description	Package Option
AD7790BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Micro Small Outline IC	RM-10
AD7791BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Micro Small Outline IC	RM-10

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD7790/AD7791 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN FUNCTION DESCRIPTIONS

Pin No.	Mnemonic	Function
7	GND	Ground Reference Point.
1	SCLK	Serial Clock Input for Data Transfers to and from the ADC. The SCLK has a schmitt triggered input making the interface suitable for opto-isolated applications. The serial clock can be continuous with all data transmitted in a continuous train of pulses. Alternatively, it can be a noncontinuous clock with the information being transmitted to or from the ADC in smaller batches of data.
2	$\overline{\mathrm{C}} \overline{\mathrm{S}}$	Chip Select Input. This is an active low logic input used to select the ADC. $\overline{\mathrm{CS}}$ can be used to select the ADC in systems with more than one device on the serial bus or as a frame synchronization signal in communicating with the device. $\overline{\mathrm{CS}}$ can be hardwired low allowing the ADC to operate in 3 -wire mode with SCLK, DIN and DOUT used to interface with the device.
3	AIN(+)	Analog Input. $\mathrm{AIN}(+)$ is the positive terminal of the fully-differential analog input.
4	$\operatorname{AIN}(-)$	Analog Input. AIN(-) is the negative terminal of the fully-differential analog input.
5	REFIN(+)	Positive Reference Input. $\operatorname{REFIN}(+)$ can lie anywhere between V_{DD} and GND + 1 V . The nominal reference voltage $(\operatorname{REFIN}(+)-\operatorname{REFIN}(-))$ is 2.5 V , but the part functions with a reference from 1 V to V_{DD}.
6	REFIN(-)	Negative Reference Input. This reference input can lie anywhere between GND and $\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$.
9	DOUT $/ \overline{\mathrm{R}} \overline{\mathrm{D}} \overline{\mathrm{Y}}$	Serial Data Output/Data Ready Output. DOUT/ $\overline{\operatorname{RDY}}$ serves a dual purpose in this interface. When $\overline{\mathrm{CS}}$ is low, it functions as a Serial Data Output pin to access the output shift register of the ADC. The output shift register can contain data from any of the on-chip data or control registers. In addition, DOUT/ $\overline{\mathrm{RDY}}$ operates as a data ready pin when $\overline{\mathrm{CS}}$ is low, going low to indicate the completion of a conversion. If the data is not read after the conversion, the data ready pin will go high before the next update occurs. The DOUT/ $\overline{\mathrm{RDY}}$ falling edge can be used as an interrupt to a processor indicating that valid data is available. Using an external serial clock, the data can be read using the DOUT/ $\overline{\operatorname{RDY}}$ pin. With $\overline{\mathrm{CS}}$ low, the data/control word information in placed on the DOUT/RDY pin on the SCLK falling edge and is valid on the SCLK rising edge. The end of a conversion is also indicated by the $\overline{\mathrm{RDY}}$ bit in the Status register. When $\overline{\mathrm{CS}}$ is high, the DOUT $/ \overline{\mathrm{RDY}}$ pin is tri-stated but the $\overline{\mathrm{RDY}}$ bit remains active.
10	DIN	Serial Data Input to the Input Shift Register on the ADC. Data in this shift register is transferred to the control registers within the ADC, the register selection bits of the Communications register identifying the appropriate register.
8	V_{DD}	Supply Voltage, 3 V or 5 V Nominal.

ON-CHIP REGISTERS

The ADC is controlled and configured via a number of on-chip registers which are described in the following pages. In the following descriptions, Set implies a Logic 1 state and Cleared implies a Logic 0 state, unless otherwise stated.

Communications Register (RS1, RS0 = 0, 0)

The Communications Register is an 8 -bit write-only register. All communications to the part must start with a write operation to the Communications Register. The data written to the Communications Register determines whether the next operation is a read or write operation, and to which register this operation takes place. For read or write operations, once the subsequent read or write operation to the selected register is complete, the interface returns to where it expects a write operation to the Communications Register. This is the default state of the interface and, on power-up or after a RESET, the ADC is in this default state waiting for a write operation to the Communications Register. In situations where the interface sequence is lost, a write operation of at least 32 serial clock cycles with DIN high returns the ADC to this default state by resetting the entire part. Table 1 outlines the bit designations for the Communications Register. CR0 through CR7 indicate the bit location, CR denoting the bits are in the Communications Register. CR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
$\overline{\mathrm{W}} \overline{\mathrm{EN}}(0)$	$0(0)$	$\mathrm{RS} 1(0)$	$\mathrm{RS} 0(0)$	$\mathrm{R} / \overline{\mathrm{W}}(0)$	$\mathrm{CREAD}(0)$	$\mathrm{CH} 1(0)$	$\mathrm{CH} 0(0)$

Table 1. Communications Register Bit Designations

Bit Location	Bit Name	Description
CR7	$\overline{\mathrm{W}} \overline{\mathrm{E}} \overline{\mathrm{N}}$	Write Enable Bit. A 0 must be written to this bit so that the write to the Communications Register actually occurs. If a 1 is the first bit written, the part will not clock on to subsequent bits in the register. It will stay at this bit location until a 0 is written to this bit. Once a 0 is written to the WEN bit, the next seven bits will be loaded to the Communications Register.
CR6	0	This bit must be programmed with a logic 0 for correct operation.
CR5-CR4	RS 1-RS0	Register Address Bits. These address bits are used to select which of the ADC's registers are being selected during this serial interface communication. See Table 2.
CR3	$\mathrm{R} / \overline{\mathrm{W}}$	A zero in this bit location indicates that the next operation will be a write to a specified register. A one in this position indicates that the next operation will be a read from the designated register.
CR2	CREAD	Continuous Read of the Data Register. When this bit is set to 1 (and the data register is selected), the serial interface is configured so that the data register can be continuously read i.e. the contents of the data register are placed on the DOUT pin automatically when the SCLK pulses are applied. The Communications register does not have to be written to for data reads. To enable continuous read mode, the instruction 001111 XX must be written to the communications register. To exit the continuous read mode, the instruction 001110XX must be written to the communications register while the $\overline{\mathrm{RDY}}$ pin is low. While in the continuous read mode, the ADC monitors activity on the DIN line so that it can receive the instruction to exit the continuous read mode. Additionally, a reset will occur if 32 consecutive 1s are seen on DIN. Therefore, DIN should be held low in the continuous read mode until an instruction is to be written to the device.
CR1-CR0	CH1-CH0	These bits are used to select the analog input channel. The differential channel can be selected (AIN $(+) / \operatorname{AIN}(-))$ or an internal short (AIN(-)/AIN()) can be selected. Alternatively, the power supply can be selected i.e. the ADC can measure the voltage on the power supply which is useful to monitor power supply variation. The power supply voltage is divided by 5 and then applied to the modulator for conversion. The ADC uses a $1.2 \mathrm{~V} \pm 5 \%$ on-chip reference as the reference source for the analog to digital conversion. Any change in channel resets the filter and a new conversion is started.

Table 2. Register Selection Table

RS1	RS0	Register	Register Size
0	0	Communications Register during a Write Operation	$8-\mathrm{Bit}$
0	0	Status Register during a Read Operation	$8-\mathrm{Bit}$
0	1	Mode Register	$8-\mathrm{Bit}$
1	0	Filter Register	$8-\mathrm{Bit}$
1	1	Data Register	$16-\mathrm{Bit}$ (AD7790)
			$24-\mathrm{Bit}$ (AD7791)

Table 3. Channel Selection Table

CH1	CH0	Channel
0	0	AIN(+) - AIN(-)
0	1	Reserved
1	0	AIN(-) - AIN (-)
1	1	$\mathrm{~V}_{\mathrm{DD}}$ Monitor

Status Register (RS1, RS0 = 0, 0; Power-on Reset = 00h)

The Status Register is an 8 -bit read-only register. To access the ADC Status Register, the user must write to the Communications Register selecting the next operation to be a read and load bit RS2, RS1 and RS0 with 0, 0, 0 . Table 4 outlines the bit designations for the Status Register. SR0 through SR7 indicate the bit loctions, SR denoting the bits are in the Status Register. SR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/ reset default status of that bit.

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
$\overline{\mathrm{R}} \overline{\mathrm{D}} \overline{\mathrm{Y}}(1)$	$\mathrm{ERR}(0)$	$0(0)$	$0(0)$	$1(1)$	$\mathrm{WL}(1 / 0)$	$\mathrm{CH} 1(0)$	$\mathrm{CH} 0(0)$

Table 4. Status Register Bit Designations

Bit Location	Bit Name	Description
SR7	$\overline{\mathrm{R}} \overline{\mathrm{D}} \overline{\mathrm{Y}}$	Ready bit for ADC. Cleared when data is written to the ADC data register. The $\overline{\mathrm{RDY}}$ bit is set automatically after the ADC data register has been read or a period of time before the data register is updated with a new conversion result to indicate to the user not to read the conversion data. It is also set when the part is placed in powerdown mode. The end of a conversion is indicated by the DOUT/ $\overline{\mathrm{RDY}}$ pin also. This pin can be used as an alternative to the status register for monitoring the ADC for conversion data.
SR6	ERR	ADC Error Bit. This bit is written to at the same time as the $\overline{\mathrm{RDY}}$ bit. Set to indicate that the result written to the ADC data register has been clamped to all zeros or all ones. Error sources include Overrange, Underrange. Cleared by a write operation to start a conversion.
SR5	0	This bit is automatically cleared.
SR4	0	This bit is automatically cleared.
SR3	1	This bit is automatically set.
SR2	1/0	This bit is automatically cleared if the device is an AD7790 and it is automically set if the device is an AD7791. This bit can be used to distinguish between the AD7790 and AD7791.
SR1-SR0	CH1-CH0	These bits indicate which channel is being converted by the ADC.

Mode Register (RS1, RS0 = 0, $\mathbf{1}$; Power-on Reset $=\mathbf{0 0 h}$)

The Mode Register is an 8 -bit register from which data can be read or to which data can be written. This register is used to configure the ADC for range, unipolar or bipolar mode, enable or disable the buffer or place the device is powerdown mode. Table 5 outlines the bit designations for the Mode register. MR0 through MR7 indicate the bit loctions, MR denoting the bits are in the Mode Register. MR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit. Any write to the setup register resets the modulator and filter and sets the $\overline{\mathrm{RDY}}$ bit.

MR7	MR6	MR5	MR4	MR3	MR2	MR1	MR0
MD1 (0)	MD0(0)	G1 (0)	G0 (0)	$0(0)$	$\mathrm{U} / \overline{\mathrm{B}}(\overline{0})$	$\operatorname{BUF}(1)$	$0(0)$

Table 5. Mode Register Bit Designations

Bit Location	Bit Name	Description
MR7-MR6	MD1- MD0	Mode Select Bits. These bits select between continuous conversion mode, single conversion mode and standby mode. In continuous conversion mode, the ADC continuously performs conversions and places the result in the data register. $\overline{\mathrm{RDY}}$ goes low when a conversion is complete. The user can read these conversions by placing the device in continuous read mode whereby the conversions are automatically placed on the DOUT line when SCLK pulses are applied or, alternatively, the user can instruct the ADC to output the conversion by writing to the communications register. After power-on, the first conversion is available after a period $2 /$ fadc while subsequent conversions are available at a frequency of fadc. In single conversion mode, the ADC is placed in powerdown mode when conversions are not being performed. When single conversion mode is selected, the ADC powers up and performs a single conversion which occurs after a period $2 /$ fadc. The conversion result in placed in the data register, $\overline{\mathrm{RDY}}$ goes low and the ADC returns to powerdown mode. The conversion remains in the DATA register and $\overline{\mathrm{RDY}}$ remains active (low) until another conversion is performed. See Table 6.
MR5-MR4	G1-G0	AD7790 Range Bits. The AD7790 can be operated with four analog input ranges (see Table 7). These bits should be set to 0 on the AD7791.
MR3	0	This bit must be programmed with a logic 0 for correct operation.
MR2	U/ $\overline{\text { B }}$	Unipolar/Bipolar bit. Set by user to enable unipolar coding i.e. zero differential input will result in 0000 hex output and a full-scale differential input will result in FFFF hex output. Cleared by the user to enable bipolar coding. Negative full-scale differential input will result in an output code of 0000 hex, zero differential input will result in an output code of 8000 hex and a positive full-scale differential input will result in an output code of FFFF hex.
MR1	BUF	Configures the ADC for buffered or unbuffered mode of operation. If cleared, the ADC operates in unbuffered mode, lowering the power consumption of the device. If set, the ADC operates in buffered mode, allowing the user to place source impedances on the front end without contributing gain errors to the system.
MR0	0	This bit must be programmed with a logic 0 for correct operation.

MD1	MD0	Mode
0	0	Continuous Conversion Mode (Default)
0	1	Reserved
1	0	Single Conversion Mode
1	1	Powerdown Mode

Table 6. Operating Modes

G1	G0	Range	AD7790 LSB Size with $\mathbf{V}_{\text {REF }}=+\mathbf{2 . 5} \mathbf{~ V ,}$ Range $= \pm \mathbf{V}_{\text {REF }}(\mu \mathbf{V})$
0	0	$\pm \mathrm{V}_{\mathrm{REF}}$	76.3
0	1	$\pm \mathrm{V}_{\mathrm{REF}} / 2$	38.14
1	0	$\pm \mathrm{V}_{\mathrm{REF}} / 4$	19.07
1	1	$\pm \mathrm{V}_{\mathrm{REF}} / 8$	9.54

Table 7. Analog Input Ranges

Filter Register (RS1, RS0 = 1, 0; Power-on Reset $=\mathbf{0 4 h}$)

The Filter Register is an 8 -bit register from which data can be read or to which data can be written. This register is used to set the output word rate. Table 8 outlines the bit designations for the setup register. FR0 through FR7 indicate the bit loctions, FR denoting the bits are in the Filter Register. FR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

FR7	FR6	FR5	FR4	FR3	FR2	FR1	FR0
$0(0)$	$0(0)$	$0(0)$	$0(0)$	$0(0)$	FS2 (1)	FS $1(0)$	FS $0(0)$

Table 8. Filter Register Bit Designations

Bit Location	Bit Name	Description
FR7-FR3	0	These bits must be programmed with a logic 0 for correct operation. These bits set the output word rate of the ADC. The update rate influences the 50/60 Hz rejection and the noise. The noise is the same for all gain settings. See Table 9.

FS2	FS1	FS0	$\mathbf{f}_{\text {ADC }}$ $(\mathbf{H z})$	$\mathbf{t}_{\mathbf{S E T T L E}}$ $(\mathbf{m s})$	$\mathbf{f 3 d B}$ $(\mathbf{H z})$	RMS Noise $(\boldsymbol{\mu V})$	Rejection	
0	0	0	120	16.7	28	20	$25 \mathrm{~dB} @ 60 \mathrm{~Hz}$	
0	0	1	100	20	24	15	$25 \mathrm{~dB} @ 50 \mathrm{~Hz}$	
0	1	0	33.3	60	8	2.5		
0	1	1	20	100	4.7	1.6	$86 \mathrm{~dB} @ 60 \mathrm{~Hz}$	
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1 6 . 6}$	$\mathbf{1 2 0 . 4}$	$\mathbf{4}$	$\mathbf{1 . 5}$	$\mathbf{7 0} \mathbf{d B}$ @ 50/60 Hz	Default Setting
1	0	1	16.7	120.1	4	1.5	$85 \mathrm{~dB} @ 50 \mathrm{~Hz}$	
1	1	0	13.3	149.7		1.2		
1	1	1	9.5	210.2	2.3	1.1	$67 \mathrm{~dB} @ 50 / 60 \mathrm{~Hz}$	

Table 9. Update Rates

Data Register (RS1, RS0 $=1,1 ;$ Power-on Reset $=0000 h(A D 7790)$ and 000000h $(A D 7791))$
The conversion result from the ADC is stored in this data register. This is a read only register. On completion of a read operation from this register, the $\overline{\mathrm{RDY}} \mathrm{bit} / \mathrm{pin}$ is set.

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: NOTES
 ${ }^{1}$ Temperature Range $-40{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design and/or characterization data on production release.
 ${ }^{3}$ Full-scale error applies to both positive and negative full-scale and applies at the factory calibration conditions..
 ${ }^{4} \mathrm{FS}[2: 0]$ are the three bits used in the Filter Register to select the Output Word Rate.
 Specifications subject to change without notice.

