LC²MOS High Speed μ P-Compatible 8-Bit ADC with Track/Hold Function AD7820

FEATURES

Fast Conversion Time: 1.36 $\boldsymbol{\mu}_{\text {s max }}$
Built-In Track-and-Hold Function
No Missed Codes
No User Trims Required
Single +5 V Supply
Ratiometric Operation
No External Clock
Extended Temperature Range Operation Skinny 20-Pin DIP, SOIC and 20-Terminal Surface Mount Packages

GENERAL DESCRIPTION

The AD7820 is a high speed, microprocessor-compatible 8-bit analog-to-digital converter which uses a half-flash conversion technique to achieve a conversion time of $1.36 \mu \mathrm{~s}$. The converter has a 0 V to +5 V analog input voltage range with a single +5 V supply.
The half-flash technique consists of 31 comparators, a most significant 4-bit ADC and a least significant 4-bit ADC. The input to the AD7820 is tracked and held by the input sampling circuitry, eliminating the need for an external sample-and-hold for signals with slew rates less than $100 \mathrm{mV} / \mu \mathrm{s}$.
The part is designed for ease of microprocessor interface with the AD7820 appearing as a memory location or I/O port without the need for external interfacing logic. All digital outputs use latched, three-state output buffer circuitry to allow direct connection to a microprocessor data bus or system input port. A non-three state overflow output is also provided to allow cascading of devices to give higher resolution.
The AD7820 is fabricated in an advanced, all ion-implanted, high speed, Linear Compatible CMOS (LC 2 MOS) process and features a low maximum power dissipation of 75 mW . It is available in 20-pin DIPs, SOICs and in 20-terminal surface mount packages.

REV. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

PRODUCT HIGHLIGHTS

1. Fast Conversion Time

The half-flash conversion technique, coupled with fabrication on Analog Devices' LC 2 MOS process, enables very fast conversion times. The maximum conversion time for the WR-RD mode is $1.36 \mu \mathrm{~s}$, with $1.6 \mu \mathrm{~s}$ the maximum for the RD mode.
2. Total Unadjusted Error

The AD7820 features an excellent total unadjusted error figure of less than $1 / 2$ LSB over the full operating temperature range. The part is also guaranteed to have no missing codes over the entire temperature range.
3. Built-In Track-and-Hold

The analog input circuitry uses sampled-data comparators, which by nature have a built-in track-and-hold function. As a result, input signals with slew rates up to $100 \mathrm{mV} / \mu \mathrm{s}$ can be converted to 8 -bits without external sample-and-hold. This corresponds to a 5 V peak-to-peak, 7 kHz sine-wave signal.
4. Single Supply

Operation from a single +5 V supply with a positive voltage reference allows operation of the AD7820 in microprocessor systems without any additional power supplies.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 Telex: 924491 Fax: 617/326-8703 Twx: 710/394-6577 26-8703 Cable: ANALOG NORWOODMASS
$N_{D D}=+5 V_{;} ; V_{\text {RIF }}(+)=+5 V_{;} ; V_{\text {REF }}(-)=G N D=O V$ unless otherwise stated). All specifications $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ unless otherwise specified. Specifications apply for RD Mode (Pin $7=0 V)$

Parameter	K Version ${ }^{1}$	L Version	B, TVersions	C, U Versions	Units	Conditione/Comments
AOCURACY						
Resolution	8	8	8	8	Bits	
Tocal Unadiusted Error ${ }^{2}$	± 1	$\pm 1 / 2$	± 1	$\pm 1 / 2$	LSB max	
Mtatmumen Resolution for which						
No Missing Codes are gurnnteed	8	8	8	8	Bits	
REFERENCE INPUT						
Input Rexistance	1.0/4.0	1.0/4.0	1.0/4.0	1.0/4.0	$k \Omega$ min/k $\Omega_{\text {max }}$	
$V_{\text {Rep }}(+)$ Input Voluge Range	$\mathrm{V}_{\text {REF }}(-) / \mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\text {REF }}(-) / \mathrm{V}_{\text {dD }}$	$V_{\text {REF }}(-) \mathrm{V}_{\text {DD }}$	$\mathbf{V}_{\text {REF }}(-) \mathrm{V}_{\text {dD }}$	$V_{\text {min }} V^{\text {max }}$	
$\mathrm{V}_{\text {REF }}(-)$ Input Voltago Range	GND/ $\mathbf{V R E F}^{(+)}$	$\underline{\operatorname{GND}} \mathrm{V}_{\text {REF }}(+)$	$\mathrm{GND}_{\mathbf{V}}^{\mathbf{R E F}}$ (+)	GND/ $\mathbf{V R E F}^{(+)}$	$V_{\text {min }} / V_{\text {max }}$	
ANALOGINPUT						
Input Voluge Range	$\mathbf{V}_{\text {REF }}(-) \mathbf{V}_{\text {REFP }}(+)$	$\mathbf{V}_{\text {REF }}(-) \mathbf{N}_{\text {ref }}(+)$	$\mathrm{V}_{\text {REF }}(-) \mathbf{V}_{\text {REF }}(+)$	$\mathbf{V}_{\text {REFF }}(-) / \mathbf{V}_{\text {REF }}(+)$	$V_{\text {min }} / \mathrm{V}_{\text {max }}$	
Inpur Leakage Current	± 3	± 3	± 3	± 3	$\mu \mathrm{A}$ max	
Input Capaciunce ${ }^{3}$	45	45	45	45	pF typ	
LOGICINPUTS						
$\overline{C S}, \overline{\text { WR}}, \overline{\mathrm{RD}}$						
$\mathrm{V}_{\text {INH }}$	2.4	2.4	2.4	2.4	$V_{\text {min }}$	
$\mathrm{V}_{\text {int }}$	0.8	0.8	0.8	0.8	$V_{\text {max }}$	
$\mathrm{I}_{\mathbf{N H H}}(\overline{\mathbf{C S}}, \overline{\mathrm{RD}})$	1	1	1	1	${ }_{\mu} \mathrm{A}_{\text {max }}$	
$\mathrm{I}_{\mathrm{NH}}(\overline{\mathrm{WR}})$	3	3	3	3	$\mu \mathrm{A}$ max	
$\mathrm{I}_{\text {dNL }}$	-1	-1	-1	-1	$\mu \mathrm{A}$ max	
Input Capacitance ${ }^{3}$	8	8	8	8	pFmax	Typically 5pF
MODE						
$\mathrm{V}_{\text {INH }}$	3.5	3.5	3.5	3.5	$V_{\text {min }}$	
$V_{\text {inL }}$	1.5	1.5	1.5	1.5	$V_{\text {max }}$	
$\mathrm{I}_{\text {nH }}$	200	200	200	200	$\mu \mathrm{A}$ max	S0 $\mu \mathrm{Atyp}$
$\mathrm{I}_{\text {niL }}$	-1	-1	-1	-1	μA max	
Input Capmectance ${ }^{3}$	8	8	8	8	pF max	Typically 5pF
LOGICOUTPUTS						
DBO-DB7, $\overline{\mathrm{OF}}, \overline{\mathrm{INT}}$						
$\mathrm{V}_{\text {OH }}$	4.0	4.0	4.0	4.0	$V_{\text {min }}$	$\mathrm{I}_{\text {Sounce }}=360 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	0.4	0.4	0.4	0.4	$V_{\text {max }}$	$\mathrm{I}_{\text {SINK }}=1.6 \mathrm{~mA}$
Lout (DB0-D87)	± 3	± 3	± 3	± 3	$\mu \mathrm{A}$ max	Floating Suate Leakage
Outpur Capacitance ${ }^{3}$	8	8	8	8	pF max	Typicaly 5pF
RDY						
$V_{\text {ol }}$	0.4	0.4	0.4	0.4	$V_{\text {max }}$	$\mathrm{I}_{\text {SINK }}=2.6 \mathrm{~mA}$
Lout	± 3	± 3	± 3	± 3	${ }_{\mu} \mathrm{A}_{\text {max }}$	Floating Sute Leakage
Output Capecitance ${ }^{3}$	8	8	8	8	pF max	Typically 5pF
SLEW RATE, TRACKING ${ }^{\mathbf{3}}$	0.2	0.2	0.2	0.2	V/ $/$ styp	
	0.1	0.1	0.1	0.1	V/us max	
POWER SUPPLY						
$V_{\text {D }}$	5	5	5	5	Volts	$\pm 5 \%$ for Specified
						Performence
IDD ${ }^{\text {d }}$	15	15	20	20	$\mathrm{mA}_{\text {max }}$	$\widehat{\mathrm{CS}}=\overline{\mathbf{R D}}=\mathbf{0}$
Power Disxipation	40	40	40	40	mwiyp	
Power Supply Sensitivity	$\pm 1 / 4$	LSB max	$\begin{aligned} & \pm 1 / 16 \mathrm{LSB} \text { typ } \\ & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \% \end{aligned}$			

NOTES
Temperature Ranges are a follows:
R, LVervioss: $\quad-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$
B,CVerrions: $-40^{\circ} \mathrm{C} 10+85 \mathrm{C}$

${ }^{\text {Simper}}$ Typical Performance Chanacteristica.
Specificationst xubiect to change without notice.

AD7820

Parameter	Limit at $25^{\circ} \mathrm{C}$ (All Versions)	Limit at $\mathbf{T}_{\min }, \mathbf{T}_{\max }$ (K,L, B, C Versions)	Limit at $\mathbf{T}_{\text {min }}, \mathbf{T}_{\text {max }}$ (T, UVersions)	Units	Conditions/Comments
$\mathrm{tcss}^{\text {che }}$	0	0	0	ns min	$\overline{\mathrm{CS}}$ TORD $/ \overline{\text { WR }}$ Setup Time
${ }^{\text {t }}$ CSH	0	0	0	ns min	$\overline{\mathrm{CS}}$ TORD $/ \overline{\mathrm{WR}}$ Hold Time
$\mathrm{t}_{\mathrm{RDY}}{ }^{2}$	70	90	100	ns max	$\overline{\mathrm{CS}}$ to Delay. Pull-Up Resistor $5 \mathrm{k} \Omega$.
${ }^{\text {t }}$ CRD	1.6	2.0	2.5	μs max	Conversion Time (RD Mode)
taCc^{3}	$\mathrm{t}_{\text {CRD }}+20$	$\mathrm{t}_{\mathrm{CRD}}+35$	$\mathrm{t}_{\text {CRD }}+50$	ns max	Data Access Time (RD Mode)
$\mathrm{t}_{\mathrm{INTH}}{ }^{2}$	125	-	-	ns typ	$\overline{\mathrm{RD}}$ to INT Delay (RD Mode)
	175	225	225	ns max	
$\mathrm{t}_{\mathrm{DH}}{ }^{4}$	60	80	100	ns max	Data Hold Time
$\mathrm{t}_{\mathbf{p}}$	500	600	600	ns min	Delay Time between Conversions
$t_{\text {wR }}$	600	600	600	ns min	Write Pulse Width
	50	50	50	μs max	
t_{RD}	600	700	700	ns min	Delay Time between $\overline{\text { WR }}$ and $\overline{\text { RD }}$ Pulses
taCCl^{3}	160	225	250	ns max	Data Access Time (WR-RD Mode, see Fig. 5b)
$\mathrm{t}_{\mathrm{R} 1}$	140	200	225	ns max	$\overline{\text { RD }}$ to INT Delay
$\mathrm{t}_{\text {INTL }}{ }^{2}$	700	-	-	ns typ	$\overline{\text { WR }}$ to INT Delay
	1000	1400	1700	ns max	
$\mathrm{t}_{\mathrm{ACC}}{ }^{3}$	70	90	110	ns max	Data Access Time (WR-RD Mode, see Fig. 5a)
tinWR^{2}	100	130	150	ns max	WR to INT Delay (Stand-Alone Operation)
$t_{\text {ID }}$	50	65	75	ns max	Data Access Time after INT (Stand-Alone Operation)

NOTES
${ }^{1}$ Sample tested at $25^{\circ} \mathrm{C}$ to ensure compliance. All input control signals are specified with $\mathrm{tr}=\mathrm{tf}=\mathbf{2 0 \mathrm { ns }}(\mathbf{1 0 \%}$ to 90% of +5 V) and timed from a voltage level of 1.6 V . ${ }^{2} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.
${ }^{3}$ Measured with load circuits of Figure 1 and defined as the time required for an output to cross 0.8 V or 2.4 V
${ }^{4}$ Defined as the time required for the data lines to change 0.5 V when loaded with the circuits of Figure 2.
Specifications subject to change without notice.

Test Circuits

a. High-Z to V_{OH}

b. High-Zto $V_{O L}$

Figure 1. Load Circuits for Data Access Time Test

a. $V_{O H}$ to High-Z

b. VOL to High-Z

Figure 2. Load Circuits for Data Hold Time Test

AD7820

ABSOLUTE MAXIMUMRATINGS*

VDD to GND 0V, +7V	
Digital Input Voltage to GND	
(Pins 6-8, 13)	$-0.3 \mathrm{~V}_{2} \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Output Voltage to GND	
(Pins 2-5, 9, 14-18)	$-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {REF }}(+)$ to GND	$\mathrm{V}_{\text {REF }}(-), \mathrm{V}_{\text {dD }}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {ReF }}(-)$ to GND	0V, $\mathrm{V}_{\text {ReF }}(+)$
$\mathrm{V}_{\mathbf{I N}}$ to GND	$-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range	
Commercial (K, L Versions)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial (B, C Versions)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (T, U Versions)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

[^0]
CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are inserted

ORDERING GUIDE			
Model ${ }^{1}$	Temperature Range	Total Unadjusted Error (Max)	Package Option ${ }^{2}$
AD7820KN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	N-20
AD7820LN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	N-20
AD7820KP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	P-20A
AD7820LP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	P-20A
AD7820KR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	R-20
AD7820LR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	R-20
AD7820BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	Q-20
AD7820CQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	Q-20
AD7820TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	Q-20
AD7820UQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	Q-20
AD7820TE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	E-20A
AD7820UE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	E-20A

NOTES

To order MIL-STD-883, Class B processed parts, add/883B to part number
Contact your local sales office for military data sheet. For U.S. Standard
Military Drawing (SMD), see DESC drawing \#5962-88650.
${ }^{2} \mathrm{E}=$ Leadless Ceramic Chip Carrier; $\mathrm{N}=$ Plastic DIP; $\mathrm{P}=$ Plastic Leaded
Chip Carrier; $\mathrm{Q}=$ Cerdip; $\mathrm{R}=\mathrm{SOIC}$

PIN CONFIGURATIONS

LCCC

REV. A

AD7820

PIN	MNEMON	DESCRIPTION
1	$\mathrm{V}_{\text {IN }}$	$\begin{aligned} & \text { Analog Input. Range: } \mathrm{V}_{\text {REF }}(-) \text { to } \\ & \mathrm{V}_{\text {REF }}(+) \text {. } \end{aligned}$
2	DB0	Data Output. Three State Output, bit 0 (LSB)
3	DB1	Data Output. Three State Output, bit 1
4	DB2	Data Output. Three State Output, bit 2
5	DB3	Data Output. Three State Output, bit 3
6	$\overline{\text { WR/RDY }}$	WRITE control input/READY status output. See Digital Interface section.
7	Mode	Mode Selection Input. It determines whether the device operates in the WR-RD or RD mode. It is internally tied to GND through a $50 \mu \mathrm{~A}$ current source. See Digital Interface section.
8	$\overline{\mathrm{RD}}$	READ Input. $\overline{\mathrm{RD}}$ must be low to access data from the part. See Digital Interface section.
9	$\overline{\text { INT }}$	INTERRUPT Output. $\overline{\text { INT }}$ going low indicates that the conversion is complete. $\overline{\text { INT }}$ returns high on the rising edge of $\overline{\mathrm{RD}}$ or $\overline{\mathrm{CS}}$. See Digital Interface section.
10	GND	Ground
11	$\mathrm{V}_{\text {ReF }}(-)$	Lower limit of reference span. Range: $\mathrm{GND} \leq \mathrm{V}_{\mathrm{REF}}(-) \leq \mathrm{V}_{\mathrm{REF}}(+)$
12	$\mathrm{V}_{\text {Ref }}(+)$	Upper limit of reference span. Range: $\mathrm{V}_{\mathrm{REF}}(-) \leq \mathrm{V}_{\mathrm{REF}}(+) \leq \mathrm{V}_{\mathrm{DD}}$
13	$\overline{\text { CS }}$	Chip Select Input. $\overline{\mathrm{CS}}$, the decoded device address, must be low for $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ to be recognized by the converter.
14	DB4	Data Output. Three State Output, bit 4
15	DB5	Data Output. Three State Output, bit 5
16	DB6	Data Output. Three State Output, bit 6
17	DB7	Data Output. Three State Output, bit 7 (MSB)
18	$\overline{\text { OFL }}$	Overflow Output. If the analog input is higher than ($\mathrm{V}_{\text {REF }}(+$) $-1 / 2 \mathrm{LSB}), \overline{\mathrm{OFL}}$ will be low at the end of conversion. It is a non three state output which can be used to cascade 2 or more devices to increase resolution.
19	NC	No connection.
20	$V_{\text {DD }}$	Power supply voltage, +5 V

CIRCUIT INFORMATION

BASIC DESCRIPTION

The AD7820 uses a half-flash conversion technique whereby two 4-bit flash A/D converters are used to achieve an 8-bit result. Each 4-bit flash ADC contains 15 comparators which compare the unknown input to a reference ladder to get a 4-bit result. For a full 8 -bit reading to be realized, the upper 4-bit flash, the most significant (MS) flash, performs a conversion to provide the 4 most significant data bits. An internal DAC, driven by the 4 MSBs , then recreates an analog approximation of the input voltage. This analog result is subtracted from the input, and the difference is converted by the lower flash ADC the least significant (LS) flash, to provide the 4 least significant bits of the output data. The MS flash ADC also has one additional comparator to detect input overrange.

OPERATING SEQUENCE

The operating sequence for the AD7820 in the WR-RD mode is shown in Figure 3. A set-up time of 500 ns is required prior to the falling edge of WR . (This 500 ns is required between reading data from the AD7820 and starting another conversion). When $\overline{\mathrm{WR}}$ is low the input comparators track the analog input signal, $\mathrm{V}_{\mathbf{I N}}$. On the rising edge of $\overline{\mathbf{W R}}$, the input signal is sampled and the result for the four most significant bits is latched. INT goes low approximately 700 ns after the rising edge of $\overline{\mathrm{WR}}$. This indicates that conversion is complete and the data result is already in the output latch. RD going low then accesses the output data. If a faster conversion time is required, the $\overline{\mathrm{RD}}$ line can be brought low 600 ns after $\overline{\mathrm{WR}}$ goes high. This latches the lower 4 bits of data and accesses the output data on DB0-DB7.

Figure 3. Operating Sequence (WR-RD Mode)

AD7820

DIGITAL INTERFACE

The AD7820 has two basic interface modes which are determined by the status of the MODE pin. When this pin is low the converter is in the RD mode, with this pin high the AD7820 is set up for the WR-RD mode.

RD Mode

The timing diagram for the RD mode is shown in Figure 4. In the RD mode configuration, conversion is initiated by taking $\overline{\mathrm{RD}}$ low. The $\overline{\mathrm{RD}}$ line is then kept low until output data appears. It is very useful with microprocessors which can be forced into a WAIT state, with the microprocessor starting a conversion, waiting, and then reading data with a single READ instruction In this mode, pin 6 of the AD7820 is configured as a status output, RDY. This RDY output can be used to drive the processo READY or WAIT input. It is an open drain output (no internal pull-up device) which goes low after the falling edge of CS and goes high impedance at the end of conversion. An INT line is also provided which goes low at the completion of conversion. $\overline{\mathrm{INT}}$ returns high on the rising edge of $\overline{\mathrm{CS}}$ or $\overline{\mathrm{RD}}$.

Figure 4. RD Mode
WR-RD Mode
In the WR-RD mode, pin 6 is configured as the WRITE input for the AD7820. With $\overline{\text { CS }}$ low, conversion is initiated on the falling edge of $\overline{\mathrm{WR}}$. Two options exist for reading data from the converter.

Figure 5a. WR-RD Mode ($t_{R D}>t_{I_{N T L}}$)

In the first of these options the processor waits for the INT status line to go low before reading the data (see Figure 5a). $\overline{\text { INT }}$ typically goes low 700ns after the rising edge of $\overline{\text { WR }}$. It indicates that conversion is complete and that the data result is in the output latch. With $\overline{\mathrm{CS}}$ low, the data outputs (DB0-DB7) are activated when $\overline{\mathrm{RD}}$ goes low. INT is reset by the rising edge of RD or CS.
The alternative option can be used to shorten the conversion time. To achieve this, the status of the INT line is ignored and RD can be brought low 600 ns after the rising edge of WR. In this case $\overline{\mathrm{RD}}$ going low transfers the data result into the output latch and activates the data outputs (DB0-DB7). $\overline{\text { INT }}$ also goes low on the falling edge of $\overline{\mathrm{RD}}$ and is reset on the rising edge of $\overline{\mathrm{RD}}$ or $\overline{\mathrm{CS}}$. The timing for this interface is shown in Figure 5 b .

Figure 5b. WR-RD Mode ($t_{R O}<t_{I N T L}$)
The AD7820 can also be used in stand-alone operation in the WR-RD mode. CS and RD are tied low and a conversion is initiated by bringing $\overline{W R}$ low. Output data is valid typically 700 ns after the rising edge of $\overline{\mathrm{WR}}$. The timing diagram for this mode is shown in Figure 6.

Figure 6. WR-RD Mode Stand-Alone Operation, $\overline{C S}=\overline{R D}=0$

AD7820

APPLYING THE AD7820
 \section*{REFERENCE AND INPUT}

The two reference inputs on the AD7820 are fully differential and define the zero to full-scale input range of the A/D converter. As a result, the span of the analog input can easily be varied since this range is equivalent to the voltage difference between $\mathbf{V}_{\mathbf{I N}}(+)$ and $\mathbf{V}_{\mathbf{I N}}(-)$. By reducing the reference span, $\mathrm{V}_{\mathrm{REF}}(+)-$ $\mathbf{V}_{\mathrm{REF}}(-)$, to less than 5 V the sensivity of the converter can be increased (i.e., if $\mathrm{V}_{\mathrm{REF}}=2 \mathrm{~V}$ then lLSB $=7.8 \mathrm{mV}$). The input/reference arrangement also facilitates ratiometric operation.

This reference flexibility also allows the input span to be offset from zero. The voltage at $\mathrm{V}_{\mathrm{REF}}(-)$ sets the input level which produces a digital output of all zeroes. Therefore, although $V_{\text {IN }}$ is not itself differential, it will have nearly differential-input capability in most measurement applications because of the reference design. Figure 7 shows some of the configurations that are possible.

INPUT CURRENT

Due to the novel conversion techniques employed by the AD7820, the analog input behaves somewhat differently than in conventional devices. The ADC's sampled-data comparators take varying amounts of input current depending on which cycle the conversion is in.

The equivalent input circuit of the AD7820 is shown in Figur 8a. When a conversion starts (WR low, WR-RD mode), all input switches close, and $V_{I N}$ is connected to the most significant and least significant comparators. Therefore, $\mathrm{V}_{\mathbf{I N}}$ is connected to thirty one 1 pF input capacitors at the same time.
The input capacitors must charge to the input voltage through the on resistance of the analog switches (about $2 \mathrm{k} \Omega$ to $5 \mathrm{k} \Omega$). In addition, about 12 pF of input stray capacitance must be charged For large source resistances, the analog input can be modelled as an RC network as shown in Figure 8b. As R_{S} increases, it takes longer for the input capacitance to charge.
In the RD mode, the time for which the input comparators track the analog input is 600 ns at the start of conversion. In the WR-RD mode the input comparators track V_{IN} for the duration of the WR pulse. Since other factors cause this time to be at least 600 ns , input time constants of 100 ns can be accommodated without special consideration. Typical total input capacitance values of 45 pF allow R_{S} to be $1.5 \mathrm{k} \Omega$ without lengthening $\overline{\mathrm{WR}}$ to give $V_{\mathbf{I N}}$ more time to settle.

Figure 7a. Power Supply as Reference

Figure 7b. External Reference 2.5V Full-Scale

Figure 7c. Input Not Referenced to GND

Figure 8a. AD7820 Equivalent Input Circuit

Figure 8b. RC Network Model

INPUT FILTERING

It should be made clear that transients on the analog input signal, caused by charging current flowing into $\mathrm{V}_{\text {IN }}$ will not normally degrade the ADC's performance. In effect, the AD7820 does not "look" at the input when these transients occur. The
comparators' outputs are not latched while $\bar{W} R$ is low, so at least 600 ns will be provided to charge the ADC's input capacitance. It is therefore not necessary to filter out these transients with an external capacitor at the V_{IN} terminal.

INHERENT SAMPLE-HOLD

A major benefit of the AD7820's input structure is its ability to measure a variety of high speed signals without the help of an external sample-and-hold. In a conventional SAR type converter, regardless of its speed, the input must remain stable to at least $1 / 2$ LSB throughout the conversion process if full accuracy is to be maintained. Consequently, for many high speed signals, this signal must be externally sampled and held stationary during the conversion. The AD7820 input comparators, by nature of their input switching inherently accomplish this sample-and-hold function. Although the conversion time for the AD7820 is $1.36 \mu \mathrm{~s}$, the time through which $V_{\text {IN }}$ must be $1 / 2$ LSB stable is much smaller. The AD7820 "samples" VIN only when WR is low. The value of $\mathrm{V}_{\text {IN }}$ approximately 100 ns (internal propogation delay) after the rising edge of $\overline{\mathrm{WR}}$ is the measured value. This value is then used in the least significant flash to generate the lower 4-bits of data.
Input signals with slew rates typically below $200 \mathrm{mV} / \mu \mathrm{s}$ can be converted without error. However, because of the input time constants, and charge injection through the opened comparator input switches, faster signals may cause errors. Still, the AD7820's loss in accuracy for a given increase in signal slope is far less than what would be witnessed in a conventional successive approximation device. A SAR type converter with a conversion time as fast as $1 \mu \mathrm{~s}$ would still not be able to measure a 5 V , 1 kHz sine wave without the aid of an external sample-and-hold. The AD7820 with no such help, can typically measure 5V, 10 kHz waveforms.

Applications

Figure 9a. 8-Bit Resolution

Figure 9b. Nominal Transfer Characteristic for 8-Bit Resolution Circuit

AD7820

Figure 10. 9-Bit Resolution

Figure 11. Telcom AD Converter

Figure 12. 8-Bit Analog Multiplier

Figure 13. Fast Infinite Sample-and-Hold

AD7820

MECHANICAL INFORMATION

 OUTLINE DIMENSIONSDimensions shown in inches and (mm)

20-PIN CERAMIC ${ }^{1}$

20-PIN CERDIP (SUFFIX Q)

20-PIN PLASTIC DIP(SUFFIX N)

[^0]: Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 Lead Temperature (Soldering, 10secs) $+300^{\circ} \mathrm{C}$
 Power Dissipation (Any Package) to $+75^{\circ} \mathrm{C}$. 450 mW
 Derates above $+75^{\circ} \mathrm{C}$ by $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and unctional operation of the device at these or any other conditions above implied. Exposure the operational sections of this specion is periods may affect device reliability.

