Octal, 13-Bit Voltage-Output DAC with Parallel Interface

FEATURES

Eight 13-Bit DACs in One Package
Full 13-Bit Performance without Adjustments
Buffered Voltage Outputs
Offset Adjust for Each DAC Pair
± 5 V Supply Operation
Unipolar or Bipolar Output Swing to $\pm 4.5 \mathrm{~V}$
Output Settling to $\mathbf{1 / 2}$ LSB in $5 \mu \mathrm{~s}$
Double Buffered Digital Inputs
Microprocessor and TTL/CMOS Compatible
Asynchronous Load Facility using $\overline{\text { LDAC }}$ Inputs
Clear Function to User-Defined Voltage
Power-On-Reset, Outputs Power Up at DUTGND
44-Lead PLCC Package
Pin Compatible with MAX547

APPLICATIONS

Process Control

Automatic Test Equipment General Purpose Instrumentation Digital Offset and Gain Adjustment Arbitrary Function Generators
Avionics Equipment

GENERAL DESCRIPTION

The AD 7838 contains eight 13-bit, voltage-output digital-toanalog converters (DAC s). The output voltages are provided through on-chip precision output amplifiers into which an external offset voltage can be inserted via the DUTGND pins. The AD 7838 operates from $\mathrm{a} \pm 5 \mathrm{~V} \pm 5 \%$ supply. Bipolar output voltages with up to $\pm 4.5 \mathrm{~V}$ voltage swing can be achieved with no external components. The AD 7838 has four separate reference inputs; each is connected to two DACs, providing different scale output voltages for every DAC pair.
The AD 7838 features double-buffered interface logic with a 13bit parallel data bus. Each DAC has an input latch and a DAC latch. D ata in the DAC latch sets the output voltage. The eight input latches are addressed with three address lines. D ata is loaded to the input latch with a single write instruction. An asynchronous $\overline{\mathrm{LDAC}}$ input transfers data from the input latch to the DAC latch. The four $\overline{\mathrm{LDAC}}$ inputs each control two DACs, and all DAC latches can be updated simultaneously by asserting

FUNCTIONAL BLOCK DIAGRAM

all $\overline{\text { LDAC }}$ pins. An asynchronous clear input resets the output of all eight DAC s to the relevant DUT GND. A sserting $\overline{\text { CLR }}$ resets both the DAC and the input latch to bipolar zero (1000 Hex). On power-up, reset circuitry performs the same function as $\overline{C L R}$. All logic inputs are TTL/CM OS compatible.
The AD 7838 is available in a 44 -lead PLCC package.

REV. 0

[^0]AD7838- SPECIFICATIONS
$\left(V_{D D}=+5 \mathrm{~V} ; \mathrm{V}_{S S}=-5 \mathrm{~V} ;\right.$ DUTGNDXX $=G N D=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to GND , $T_{A}{ }^{1}=T_{\text {MIN }}$ to $T_{\text {MAX, }}$ unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.)

Parameter	B	Units	Test Conditions/Comments
ACCURACY Resolution Relative Accuracy Differential N onlinearity Bipolar Zero-C ode Error Gain Error $V_{D D}$ Power Supply Rejection ${ }^{2}$ $V_{\text {sS }}$ Power Supply Rejection ${ }^{2}$ Load Regulation	$\begin{aligned} & 13 \\ & \pm 2 \\ & \pm 1 \\ & \pm 20 \\ & \pm 8 \\ & \pm 0.0025 \\ & \pm 0.0025 \\ & 0.3 \end{aligned}$	Bits LSB max LSB max LSB max $\% / \%$ max \%/\% max LSB typ	```Typically \(\pm 0.5\) LSB Guaranteed M onotonic Over T emperature T ypically \(\pm 5\) LSB Typically \(\pm 1\) LSB \(\Delta \mathrm{G}\) ain/ \(\Delta \mathrm{V}_{\mathrm{DD}}\) \(\Delta \mathrm{G}\) ain/ \(\Delta \mathrm{V}_{\text {ss }}\) \(\mathrm{R}_{\mathrm{L}}=\) Unloaded to \(10 \mathrm{k} \Omega\)```
REFERENCE INPUTS ${ }^{3,4}$ Input Range Input Impedance	$\begin{aligned} & \text { DUTGND } \\ & V_{D D} \\ & 5 \\ & \hline \end{aligned}$	V min \vee max $\mathrm{k} \Omega$ min	
OUTPUT CHARACTERISTICS M aximum Output Voltage M inimum Output Voltage	$\begin{aligned} & V_{D D}-0.5 \\ & V_{S S}+0.5 \\ & \hline \end{aligned}$	\checkmark max V min	
DYNAMIC PERFORMANCE Voltage Output Slew Rate Output Settling Time Digital F eedthrough Digital C rosstalk	$\begin{aligned} & 3 \\ & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	V/us typ $\mu \mathrm{styp}$ nV-s typ nV-s typ	Settling to 0.5 LSB of Full Scale ${ }^{5}$
DIGITAL INPUTS $V_{\text {Inн }}$, Input High Voltage $\mathrm{V}_{\text {INL }}$, Input Low Voltage $I_{\text {INH }}$, Input Current $C_{\text {IN }}$, Input Capacitance ${ }^{6}$	$\begin{gathered} 2.4 \\ 0.8 \\ \pm 1 \\ 10 \end{gathered}$	V min V max $\mu \mathrm{A}$ max pF max	$V_{I N}=0 V \text { or } V_{D D}$
POWER REQUIREMENTS $\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{S S} \\ & \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{S}} \end{aligned}$	$\begin{aligned} & 5 \\ & -5 \\ & 44 \\ & 40 \\ & \hline \end{aligned}$	V nom \checkmark nom mA max mA max	$\pm 5 \%$ for Specified Performance $\pm 5 \%$ for Specified Performance Typically 14 mA Typically 11 mA

NOTES
${ }^{1} \mathrm{~T}$ emperature Range for B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ PSRR is tested by changing the respective supply voltage by $\pm 5 \%$.
${ }^{3}$ F or best performance, REFxx should be greater than DUTGND xx by 2 V and less than $\mathrm{V}_{\mathrm{DD}}-0.6 \mathrm{~V}$. The device operates with reference inputs outside this range, but performance may degrade.
${ }^{4}$ R eference input resistance is code dependent.
${ }^{5} \mathrm{~T}$ ypical settling time with 1000 pF capacitive load is $10 \mu \mathrm{~s}$.
${ }^{6} \mathrm{G}$ uaranteed by design, not production tested.
Specifications subject to change without notice.

TIMING SPECIFICATIONS ${ }^{1}\left(V_{D O}=+5 v ; V_{S s}=-5 v ;\right.$ DUGCND $=G N D=0 V$, REFx $\left.=4.096 \mathrm{~V}\right)$

Parameter	Limit at $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$	Units	Description
t_{1}	10	ns min	Address Valid to $\overline{\mathrm{WR}}$ Setup Time
t_{2}	0	$n s$ min	Address Valid to $\overline{\mathrm{WR}} \mathrm{H}$ old T ime
t_{3}	50	ns min	$\overline{\text { CS Pulse W idth }}$
t_{4}	50	ns min	WR Pulse Width
t_{5}	0	$n s$ min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ Setup Time
t_{6}	0	$n s$ min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}} \mathrm{H}$ old T ime
t_{7}	50	ns min	D ata Valid to $\overline{\mathrm{WR}}$ Setup T ime
t_{8}	0	ns min	D ata Valid to $\overline{\mathrm{WR}}$ H old T ime
t_{9}	5	$\mu \mathrm{styp}$	Output Settling T ime
t_{10}	100	ns min	CLR Pulse Width
t_{11}	50	ns min	$\overline{\text { LDAC Pulse Width }}$

NOTES
${ }^{1}$ All input signals are specified with $\mathrm{tr}=\mathrm{tf}=5 \mathrm{~ns}(10 \%$ to 90% of 5 V$)$ and timed from a voltage level of 1.6 V . Timing applies for all grades of the part. ${ }^{2}$ Rise and fall times should be no longer than 50 ns .
Specifications subject to change without notice.

Figure 1. Timing Diagram

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1 2}} \mathbf{2}$

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Digital Inputs to GND $\ldots-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
REFxx \ldots. . DUTGND -0.3 to $V_{D D}+0.3$

$V_{\text {OUT }} . V_{\text {DD }}$ to $V_{S S}$
M ax Current Into REFxx Pin $\pm 10 \mathrm{~mA}$
M ax Current Into Any Other Signal Pin $\pm 50 \mathrm{~mA}$
O perating Temperature Range Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ORDERING GUIDE

Model	Temperature Range	Relative Accuracy (LSBs)	DNL (LSBs)	Package Description	Package Option
AD 7838BP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	± 2	± 1	Plastic Leaded Chip C arrier (PLCC)	P-44A

PIN CONFIGURATION

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 7838 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

